These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 27943104)

  • 21. Nonlinear multiscale analysis of coronary atherosclerotic vulnerable plaque artery: fluid-structural modeling with micromechanics.
    Massarwa E; Aronis Z; Eliasy R; Einav S; Haj-Ali R
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1889-1901. PubMed ID: 34191188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of fracture behavior of human atherosclerotic fibrous caps using a miniature single edge notched tensile test.
    Davis LA; Stewart SE; Carsten CG; Snyder BA; Sutton MA; Lessner SM
    Acta Biomater; 2016 Oct; 43():101-111. PubMed ID: 27431877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study.
    Stone PH; Saito S; Takahashi S; Makita Y; Nakamura S; Kawasaki T; Takahashi A; Katsuki T; Nakamura S; Namiki A; Hirohata A; Matsumura T; Yamazaki S; Yokoi H; Tanaka S; Otsuji S; Yoshimachi F; Honye J; Harwood D; Reitman M; Coskun AU; Papafaklis MI; Feldman CL;
    Circulation; 2012 Jul; 126(2):172-81. PubMed ID: 22723305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatigue and plaque rupture in myocardial infarction.
    Versluis A; Bank AJ; Douglas WH
    J Biomech; 2006; 39(2):339-47. PubMed ID: 16321636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models.
    Tang D; Yang C; Zheng J; Woodard PK; Saffitz JE; Sicard GA; Pilgram TK; Yuan C
    J Biomech Eng; 2005 Dec; 127(7):1185-94. PubMed ID: 16502661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human left coronary arteries.
    Rikhtegar F; Knight JA; Olgac U; Saur SC; Poulikakos D; Marshall W; Cattin PC; Alkadhi H; Kurtcuoglu V
    Atherosclerosis; 2012 Apr; 221(2):432-7. PubMed ID: 22317967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative assessment of coronary artery plaque vulnerability by high-resolution magnetic resonance imaging and computational biomechanics: a pilot study ex vivo.
    Zheng J; El Naqa I; Rowold FE; Pilgram TK; Woodard PK; Saffitz JE; Tang D
    Magn Reson Med; 2005 Dec; 54(6):1360-8. PubMed ID: 16265643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo.
    Wu X; von Birgelen C; Li Z; Zhang S; Huang J; Liang F; Li Y; Wijns W; Tu S
    Int J Cardiovasc Imaging; 2018 Jun; 34(6):849-861. PubMed ID: 29397475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arterial Remodeling and Endothelial Shear Stress Exhibit Significant Longitudinal Heterogeneity Along the Length of Coronary Plaques.
    Antoniadis AP; Papafaklis MI; Takahashi S; Shishido K; Andreou I; Chatzizisis YS; Tsuda M; Mizuno S; Makita Y; Domei T; Ikemoto T; Coskun AU; Honye J; Nakamura S; Saito S; Edelman ER; Feldman CL; Stone PH
    JACC Cardiovasc Imaging; 2016 Aug; 9(8):1007-9. PubMed ID: 27491487
    [No Abstract]   [Full Text] [Related]  

  • 30. Peak cap stress calculations in coronary atherosclerotic plaques with an incomplete necrotic core geometry.
    Kok AM; Speelman L; Virmani R; van der Steen AF; Gijsen FJ; Wentzel JJ
    Biomed Eng Online; 2016 May; 15(1):48. PubMed ID: 27145748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Residual Stress, Axial Stretch, and Circumferential Shrinkage on Coronary Plaque Stress and Strain Calculations: A Modeling Study Using IVUS-Based Near-Idealized Geometries.
    Wang L; Zhu J; Samady H; Monoly D; Zheng J; Guo X; Maehara A; Yang C; Ma G; Mintz GS; Tang D
    J Biomech Eng; 2017 Jan; 139(1):0145011-01450111. PubMed ID: 27814429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid-structure interaction studies.
    Liang X; Xenos M; Alemu Y; Rambhia SH; Lavi I; Kornowski R; Gruberg L; Fuchs S; Einav S; Bluestein D
    Coron Artery Dis; 2013 Mar; 24(2):75-87. PubMed ID: 23363983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of Atherosclerotic Plaque Development in an In Vivo Coronary Arterial Segment Based on a Multilevel Modeling Approach.
    Sakellarios AI; Raber L; Bourantas CV; Exarchos TP; Athanasiou LS; Pelosi G; Koskinas KC; Parodi O; Naka KK; Michalis LK; Serruys PW; Garcia-Garcia HM; Windecker S; Fotiadis DI
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1721-1730. PubMed ID: 28113248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progressive changes of elastic moduli of arterial wall and atherosclerotic plaque components during plaque development in human coronary arteries.
    Rezvani-Sharif A; Tafazzoli-Shadpour M; Avolio A
    Med Biol Eng Comput; 2019 Mar; 57(3):731-740. PubMed ID: 30374700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The correspondence between coronary arterial wall strain and histology in a porcine model of atherosclerosis.
    Liang Y; Zhu H; Friedman MH
    Phys Med Biol; 2009 Sep; 54(18):5625-41. PubMed ID: 19724095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of axial image resolution on atherosclerotic plaque stress computations.
    Nieuwstadt HA; Akyildiz AC; Speelman L; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ
    J Biomech; 2013 Feb; 46(4):689-95. PubMed ID: 23261242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation of stress in a blood vessel due to plaque sediments in coronary artery disease.
    Rakibuzzaman M; Kim HH; Suh SH; Lee BK; Kwon HM; Zhou L
    Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38806008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics.
    Park JB; Choi G; Chun EJ; Kim HJ; Park J; Jung JH; Lee MH; Otake H; Doh JH; Nam CW; Shin ES; De Bruyne B; Taylor CA; Koo BK
    Heart; 2016 Oct; 102(20):1655-61. PubMed ID: 27302987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age-related development of atherosclerotic plaque stress: a population-based finite-element analysis.
    Veress AI; Cornhill JF; Herderick EE; Thomas JD
    Coron Artery Dis; 1998; 9(1):13-9. PubMed ID: 9589186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical properties of human atherosclerotic intima tissue.
    Akyildiz AC; Speelman L; Gijsen FJ
    J Biomech; 2014 Mar; 47(4):773-83. PubMed ID: 24529360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.