BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 27943406)

  • 1. Fast Genome-Wide QTL Association Mapping on Pedigree and Population Data.
    Zhou H; Blangero J; Dyer TD; Chan KK; Lange K; Sobel EM
    Genet Epidemiol; 2017 Apr; 41(3):174-186. PubMed ID: 27943406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast genome-wide pedigree quantitative trait loci analysis using MENDEL.
    Zhou H; Zhou J; Sobel EM; Lange K
    BMC Proc; 2014; 8(Suppl 1):S93. PubMed ID: 25519348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide QTL and eQTL analyses using Mendel.
    Zhou H; Zhou J; Hu T; Sobel EM; Lange K
    BMC Proc; 2016; 10(Suppl 7):239-244. PubMed ID: 27980643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design considerations for genetic linkage and association studies.
    Nsengimana J; Bishop DT
    Methods Mol Biol; 2012; 850():237-62. PubMed ID: 22307702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linkage analysis without defined pedigrees.
    Day-Williams AG; Blangero J; Dyer TD; Lange K; Sobel EM
    Genet Epidemiol; 2011 Jul; 35(5):360-70. PubMed ID: 21465549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mendel: the Swiss army knife of genetic analysis programs.
    Lange K; Papp JC; Sinsheimer JS; Sripracha R; Zhou H; Sobel EM
    Bioinformatics; 2013 Jun; 29(12):1568-70. PubMed ID: 23610370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QTLRel: an R package for genome-wide association studies in which relatedness is a concern.
    Cheng R; Abney M; Palmer AA; Skol AD
    BMC Genet; 2011 Jul; 12():66. PubMed ID: 21794153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating power and type 1 error in large pedigree analyses of binary traits.
    Cummings AC; Torstenson E; Davis MF; D'Aoust LN; Scott WK; Pericak-Vance MA; Bush WS; Haines JL
    PLoS One; 2013; 8(5):e62615. PubMed ID: 23658753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relevance of genetic relationship in GWAS and genomic prediction.
    Pereira HD; Soriano Viana JM; Andrade ACB; Fonseca E Silva F; Paes GP
    J Appl Genet; 2018 Feb; 59(1):1-8. PubMed ID: 29190011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide association studies for agronomical traits in a world wide spring barley collection.
    Pasam RK; Sharma R; Malosetti M; van Eeuwijk FA; Haseneyer G; Kilian B; Graner A
    BMC Plant Biol; 2012 Jan; 12():16. PubMed ID: 22284310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using family-based imputation in genome-wide association studies with large complex pedigrees: the Framingham Heart Study.
    Chen MH; Huang J; Chen WM; Larson MG; Fox CS; Vasan RS; Seshadri S; O'Donnell CJ; Yang Q
    PLoS One; 2012; 7(12):e51589. PubMed ID: 23284720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis.
    Aulchenko YS; de Koning DJ; Haley C
    Genetics; 2007 Sep; 177(1):577-85. PubMed ID: 17660554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of linkage analysis methods for genome-wide scanning of extended pedigrees, with application to the TG/HDL-C ratio in the Framingham Heart Study.
    Horne BD; Malhotra A; Camp NJ;
    BMC Genet; 2003 Dec; 4 Suppl 1(Suppl 1):S93. PubMed ID: 14975161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why breeding values estimated using familial data should not be used for genome-wide association studies.
    Ekine CC; Rowe SJ; Bishop SC; de Koning DJ
    G3 (Bethesda); 2014 Feb; 4(2):341-7. PubMed ID: 24362310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ROADTRIPS: case-control association testing with partially or completely unknown population and pedigree structure.
    Thornton T; McPeek MS
    Am J Hum Genet; 2010 Feb; 86(2):172-84. PubMed ID: 20137780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of linkage disequilibrium and co-segregation information to the accuracy of genomic prediction.
    Sun X; Fernando R; Dekkers J
    Genet Sel Evol; 2016 Oct; 48(1):77. PubMed ID: 27729012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pedigrees or markers: Which are better in estimating relatedness and inbreeding coefficient?
    Wang J
    Theor Popul Biol; 2016 Feb; 107():4-13. PubMed ID: 26344786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computationally efficient multipoint linkage analysis on extended pedigrees for trait models with two contributing major Loci.
    Su M; Thompson EA
    Genet Epidemiol; 2012 Sep; 36(6):602-11. PubMed ID: 22740194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. solarius: an R interface to SOLAR for variance component analysis in pedigrees.
    Ziyatdinov A; Brunel H; Martinez-Perez A; Buil A; Perera A; Soria JM
    Bioinformatics; 2016 Jun; 32(12):1901-2. PubMed ID: 27153684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.