These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27943423)

  • 21. Scaling of spontaneous imbibition data with wettability included.
    Li K
    J Contam Hydrol; 2007 Jan; 89(3-4):218-30. PubMed ID: 17081652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights into the Microscopic Oil-Water Flow Characteristics and Displacement Mechanisms during Waterflooding in Sandstone Reservoir Rock Based on Micro-CT Technology: A Pore-Scale Numerical Simulation Study.
    Hu B; Chai G; Liu X; Wen X; Gu Z; Xie L; Han S; Su J
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generalized modeling of spontaneous imbibition based on Hagen-Poiseuille flow in tortuous capillaries with variably shaped apertures.
    Cai J; Perfect E; Cheng CL; Hu X
    Langmuir; 2014 May; 30(18):5142-51. PubMed ID: 24785579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems.
    Mohammed M; Babadagli T
    Adv Colloid Interface Sci; 2015 Jun; 220():54-77. PubMed ID: 25798909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immiscible displacement of oil by water in consolidated porous media due to capillary imbibition under ultrasonic waves.
    Hamida T; Babadagli T
    J Acoust Soc Am; 2007 Sep; 122(3):1539. PubMed ID: 17927413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on the Influence of Different Factors on Spontaneous Oil Recovery of Nanosurfactants in a Tight Reservoir.
    Wang J; Zhang J; Song L; Jiang H; Xu H; Yang K; Ke W
    ACS Omega; 2021 Aug; 6(30):19378-19385. PubMed ID: 34368524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spontaneous Imbibition of Capillaries under the End Effect and Wetting Hysteresis.
    Zhang L; Wang K; An H; Li G; Su Y; Zhang W; Yang X
    ACS Omega; 2022 Feb; 7(5):4363-4371. PubMed ID: 35155929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetization evolution in network models of porous rock under conditions of drainage and imbibition.
    Chang D; Ioannidis MA
    J Colloid Interface Sci; 2002 Sep; 253(1):159-70. PubMed ID: 16290842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic Effects of Aqueous Phase Viscoelasticity and Reduced Interfacial Tension on Nonwetting Phase Displacement Efficiency: An In Situ Experimental Investigation.
    Qu H; Khishvand M; Piri M
    Langmuir; 2023 Mar; 39(11):3837-3852. PubMed ID: 36908100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of two phase flow and phase trapping by secondary imbibition within Fontainebleau sandstone.
    Holmes WM; Packer KJ
    Magn Reson Imaging; 2003; 21(3-4):389-91. PubMed ID: 12850741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types.
    Naderi K; Babadagli T
    Ultrason Sonochem; 2010 Mar; 17(3):500-8. PubMed ID: 19932981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Secondary imbibition in NAPL-invaded mixed-wet sediments.
    Al-Futaisi A; Patzek TW
    J Contam Hydrol; 2004 Oct; 74(1-4):61-81. PubMed ID: 15358487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone.
    Iglauer S; Fernø MA; Shearing P; Blunt MJ
    J Colloid Interface Sci; 2012 Jun; 375(1):187-92. PubMed ID: 22440726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variations in Wettability and Interfacial Tension during Alkali-Polymer Application for High and Low TAN Oils.
    Arekhov V; Hincapie RE; Clemens T; Tahir M
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 33003407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental Study on Spontaneous Imbibition of Coal Samples of Different Ranks Based on the NMR Relaxation Spectrum.
    Wang N; Du Y; Fu C; Ma X; Zhang X; Wang J; Wang N
    ACS Omega; 2023 Sep; 8(37):33526-33542. PubMed ID: 37744802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capillary displacement of viscous liquids in a multi-layered porous medium.
    Ashraf S; Phirani J
    Soft Matter; 2019 Feb; 15(9):2057-2070. PubMed ID: 30734811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental Investigation on the Pore-Scale Mechanism of Improved Sweep Efficiency by Low-Salinity Water Flooding Using a Reservoir-on-a-Chip.
    Li S; Liu Y; Xue L; Yang L; Yuan Z
    ACS Omega; 2021 Aug; 6(32):20984-20991. PubMed ID: 34423206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study on the Wettability Alteration of Tight Sandstone by Low-Frequency Vibration and Nanofluid.
    Gu X; Yan D; Zhang Z; Liu Z; Jing C; Meng X; Liu Y
    ACS Omega; 2024 Feb; 9(5):5705-5714. PubMed ID: 38343962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of dynamic contact angle variation on spontaneous imbibition in porous materials.
    Bianchi Janetti M; Janssen H
    Transp Porous Media; 2022; 142(3):493-508. PubMed ID: 35698639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oil recovery performances of surfactant solutions by capillary imbibition.
    Babadagli T; Boluk Y
    J Colloid Interface Sci; 2005 Feb; 282(1):162-75. PubMed ID: 15576095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.