These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 27943448)
1. One-second MRI of a three-dimensional vocal tract to measure dynamic articulator modifications. Burdumy M; Traser L; Burk F; Richter B; Echternach M; Korvink JG; Hennig J; Zaitsev M J Magn Reson Imaging; 2017 Jul; 46(1):94-101. PubMed ID: 27943448 [TBL] [Abstract][Full Text] [Related]
2. High-frame-rate full-vocal-tract 3D dynamic speech imaging. Fu M; Barlaz MS; Holtrop JL; Perry JL; Kuehn DP; Shosted RK; Liang ZP; Sutton BP Magn Reson Med; 2017 Apr; 77(4):1619-1629. PubMed ID: 27099178 [TBL] [Abstract][Full Text] [Related]
3. Acceleration of MRI of the vocal tract provides additional insight into articulator modifications. Burdumy M; Traser L; Richter B; Echternach M; Korvink JG; Hennig J; Zaitsev M J Magn Reson Imaging; 2015 Oct; 42(4):925-35. PubMed ID: 25647755 [TBL] [Abstract][Full Text] [Related]
4. 3D dynamic MRI of the vocal tract during natural speech. Lim Y; Zhu Y; Lingala SG; Byrd D; Narayanan S; Nayak KS Magn Reson Med; 2019 Mar; 81(3):1511-1520. PubMed ID: 30390319 [TBL] [Abstract][Full Text] [Related]
5. Measurement of temporal changes in vocal tract area function from 3D cine-MRI data. Takemoto H; Honda K; Masaki S; Shimada Y; Fujimoto I J Acoust Soc Am; 2006 Feb; 119(2):1037-49. PubMed ID: 16521766 [TBL] [Abstract][Full Text] [Related]
6. Weight-bearing MR imaging as an option in the study of gravitational effects on the vocal tract of untrained subjects in singing phonation. Traser L; Burdumy M; Richter B; Vicari M; Echternach M PLoS One; 2014; 9(11):e112405. PubMed ID: 25379885 [TBL] [Abstract][Full Text] [Related]
7. The effect of supine and upright position on vocal tract configurations during singing--a comparative study in professional tenors. Traser L; Burdumy M; Richter B; Vicari M; Echternach M J Voice; 2013 Mar; 27(2):141-8. PubMed ID: 23380394 [TBL] [Abstract][Full Text] [Related]
8. Three Professional Singers' Vocal Tract Dimensions in Operatic Singing, Kulning, and Edge-A Multiple Case Study Examining Loud Singing. Ikävalko T; Laukkanen AM; McAllister A; Eklund R; Lammentausta E; Leppävuori M; Nieminen MT J Voice; 2024 Sep; 38(5):1253.e11-1253.e27. PubMed ID: 35277318 [TBL] [Abstract][Full Text] [Related]
9. Morphometric Differences of Vocal Tract Articulators in Different Loudness Conditions in Singing. Echternach M; Burk F; Burdumy M; Traser L; Richter B PLoS One; 2016; 11(4):e0153792. PubMed ID: 27096935 [TBL] [Abstract][Full Text] [Related]
10. Determining the Relevant Criteria for Three-dimensional Vocal Tract Characterization. Vos RR; Murphy DT; Howard DM; Daffern H J Voice; 2018 Mar; 32(2):130-142. PubMed ID: 28647430 [TBL] [Abstract][Full Text] [Related]
11. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study. Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional vocal tract imaging and formant structure: varying vocal register, pitch, and loudness. Tom K; Titze IR; Hoffman EA; Story BH J Acoust Soc Am; 2001 Feb; 109(2):742-7. PubMed ID: 11248978 [TBL] [Abstract][Full Text] [Related]
13. High-resolution dynamic speech imaging with joint low-rank and sparsity constraints. Fu M; Zhao B; Carignan C; Shosted RK; Perry JL; Kuehn DP; Liang ZP; Sutton BP Magn Reson Med; 2015 May; 73(5):1820-32. PubMed ID: 24912452 [TBL] [Abstract][Full Text] [Related]
14. Human vocal tract analysis by in vivo 3D MRI during phonation: a complete system for imaging, quantitative modeling, and speech synthesis. Wismueller A; Behrends J; Hoole P; Leinsinger GL; Reiser MF; Westesson PL Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):306-12. PubMed ID: 18982619 [TBL] [Abstract][Full Text] [Related]
15. Improved vocal tract reconstruction and modeling using an image super-resolution technique. Zhou X; Woo J; Stone M; Prince JL; Espy-Wilson CY J Acoust Soc Am; 2013 Jun; 133(6):EL439-45. PubMed ID: 23742437 [TBL] [Abstract][Full Text] [Related]
17. Real-time MRI of speaking at a resolution of 33 ms: undersampled radial FLASH with nonlinear inverse reconstruction. Niebergall A; Zhang S; Kunay E; Keydana G; Job M; Uecker M; Frahm J Magn Reson Med; 2013 Feb; 69(2):477-85. PubMed ID: 22498911 [TBL] [Abstract][Full Text] [Related]
18. Articulation and vocal tract acoustics at soprano subject's high fundamental frequencies. Echternach M; Birkholz P; Traser L; Flügge TV; Kamberger R; Burk F; Burdumy M; Richter B J Acoust Soc Am; 2015 May; 137(5):2586-95. PubMed ID: 25994691 [TBL] [Abstract][Full Text] [Related]
19. Dynamic Fast Imaging Employing Steady State Acquisition Magnetic Resonance Imaging of the Vocal Tract in One Overtone Male Singer: Our Preliminary Experience. Barbiera F; Lo Casto A; Murmura B; Bortoluzzi G; Orefice I; Gucciardo AG J Voice; 2022 Mar; 36(2):170-175. PubMed ID: 32600871 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Cartesian and Non-Cartesian Real-Time MRI Sequences at 1.5T to Assess Velar Motion and Velopharyngeal Closure during Speech. Freitas AC; Wylezinska M; Birch MJ; Petersen SE; Miquel ME PLoS One; 2016; 11(4):e0153322. PubMed ID: 27073905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]