These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27943451)

  • 1. Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects.
    Lakey PSJ; Wisthaler A; Berkemeier T; Mikoviny T; Pöschl U; Shiraiwa M
    Indoor Air; 2017 Jul; 27(4):816-828. PubMed ID: 27943451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air.
    Wisthaler A; Weschler CJ
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6568-75. PubMed ID: 19706436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous oxidation of squalene film by ozone under various indoor conditions.
    Petrick L; Dubowski Y
    Indoor Air; 2009 Oct; 19(5):381-91. PubMed ID: 19500173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales.
    Shiraiwa M; Carslaw N; Tobias DJ; Waring MS; Rim D; Morrison G; Lakey PSJ; Kruza M; von Domaros M; Cummings BE; Won Y
    Environ Sci Process Impacts; 2019 Aug; 21(8):1240-1254. PubMed ID: 31070639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indoor ozone/human chemistry and ventilation strategies.
    Salvador CM; Bekö G; Weschler CJ; Morrison G; Le Breton M; Hallquist M; Ekberg L; Langer S
    Indoor Air; 2019 Nov; 29(6):913-925. PubMed ID: 31420890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observing ozone chemistry in an occupied residence.
    Liu Y; Misztal PK; Arata C; Weschler CJ; Nazaroff WW; Goldstein AH
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33526680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical-Chemical Coupling Model for Characterizing the Reaction of Ozone with Squalene in Realistic Indoor Environments.
    Zhang M; Xiong J; Liu Y; Misztal PK; Goldstein AH
    Environ Sci Technol; 2021 Feb; 55(3):1690-1698. PubMed ID: 33464056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozone in indoor environments: concentration and chemistry.
    Weschler CJ
    Indoor Air; 2000 Dec; 10(4):269-88. PubMed ID: 11089331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.
    Youssefi S; Waring MS
    Environ Sci Technol; 2014 Jul; 48(14):7899-908. PubMed ID: 24940869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of chemical interactions at the human surface on breathing zone levels of reactants and products.
    Rim D; Novoselec A; Morrison G
    Indoor Air; 2009 Aug; 19(4):324-34. PubMed ID: 19382954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of the human occupant in indoor chemistry.
    Weschler CJ
    Indoor Air; 2016 Feb; 26(1):6-24. PubMed ID: 25607256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connecting the Elementary Reaction Pathways of Criegee Intermediates to the Chemical Erosion of Squalene Interfaces during Ozonolysis.
    Heine N; Houle FA; Wilson KR
    Environ Sci Technol; 2017 Dec; 51(23):13740-13748. PubMed ID: 29120614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactions and Products of Squalene and Ozone: A Review.
    Coffaro B; Weisel CP
    Environ Sci Technol; 2022 Jun; 56(12):7396-7411. PubMed ID: 35648815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical reactions among indoor pollutants: what we've learned in the new millennium.
    Weschler CJ
    Indoor Air; 2004; 14 Suppl 7():184-94. PubMed ID: 15330786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial distributions of ozonolysis products from human surfaces in ventilated rooms.
    Won Y; Lakey PSJ; Morrison G; Shiraiwa M; Rim D
    Indoor Air; 2020 Nov; 30(6):1229-1240. PubMed ID: 32478932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Insight into the Ozone-Skin Lipid Oxidation Products Observed by Secondary Electrospray Ionization High-Resolution Mass Spectrometry.
    Zeng J; Mekic M; Xu X; Loisel G; Zhou Z; Gligorovski S; Li X
    Environ Sci Technol; 2020 Nov; 54(21):13478-13487. PubMed ID: 33085459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secondary organic aerosol formation initiated by α-terpineol ozonolysis in indoor air.
    Yang Y; Waring MS
    Indoor Air; 2016 Dec; 26(6):939-952. PubMed ID: 26609907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of surface ozone interactions on indoor air chemistry: A modeling study.
    Kruza M; Lewis AC; Morrison GC; Carslaw N
    Indoor Air; 2017 Sep; 27(5):1001-1011. PubMed ID: 28303599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and Products from Heterogeneous Oxidation of Squalene with Ozone.
    Zhou S; Forbes MW; Abbatt JP
    Environ Sci Technol; 2016 Nov; 50(21):11688-11697. PubMed ID: 27668450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the off-body squalene ozonolysis on indoor surfaces.
    Zhang M; Gao Y; Xiong J
    Chemosphere; 2022 Mar; 291(Pt 1):132772. PubMed ID: 34742760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.