These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27943451)

  • 21. Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment.
    Fadeyi MO; Weschler CJ; Tham KW; Wu WY; Sultan ZM
    Environ Sci Technol; 2013 Apr; 47(8):3933-41. PubMed ID: 23488675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of ventilation on reactions among indoor pollutants: modeling and experimental observations.
    Weschler CJ; Shields HC
    Indoor Air; 2000 Jun; 10(2):92-100. PubMed ID: 11980107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of Mechanical Ventilation Systems and Human Occupancy on Time-Resolved Source Rates of Volatile Skin Oil Ozonolysis Products in a LEED-Certified Office Building.
    Wu T; Tasoglou A; Huber H; Stevens PS; Boor BE
    Environ Sci Technol; 2021 Dec; 55(24):16477-16488. PubMed ID: 34851619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry.
    Fooshee DR; Aiona PK; Laskin A; Laskin J; Nizkorodov SA; Baldi PF
    Environ Sci Technol; 2015 Nov; 49(22):13304-13. PubMed ID: 26492333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface chemistry reactions of alpha-terpineol [(R)-2-(4-methyl-3-cyclohexenyl)isopropanol] with ozone and air on a glass and a vinyl tile.
    Ham JE; Wells JR
    Indoor Air; 2008 Oct; 18(5):394-407. PubMed ID: 18647191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Products of ozone-initiated chemistry in a simulated aircraft environment.
    Wisthaler A; Tamás G; Wyon DP; Strøm-Tejsen P; Space D; Beauchamp J; Hansel A; Märk TD; Weschler CJ
    Environ Sci Technol; 2005 Jul; 39(13):4823-32. PubMed ID: 16053080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How do breath and skin emissions impact indoor air chemistry?
    Kruza M; Carslaw N
    Indoor Air; 2019 May; 29(3):369-379. PubMed ID: 30663813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Outdoor ozone and building-related symptoms in the BASE study.
    Apte MG; Buchanan IS; Mendell MJ
    Indoor Air; 2008 Apr; 18(2):156-70. PubMed ID: 18333994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emission Rates of Volatile Organic Compounds from Humans.
    Wang N; Ernle L; Bekö G; Wargocki P; Williams J
    Environ Sci Technol; 2022 Apr; 56(8):4838-4848. PubMed ID: 35389619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SVOC exposure indoors: fresh look at dermal pathways.
    Weschler CJ; Nazaroff WW
    Indoor Air; 2012 Oct; 22(5):356-77. PubMed ID: 22313149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling the Time-Dependent Concentrations of Primary and Secondary Reaction Products of Ozone with Squalene in a University Classroom.
    Xiong J; He Z; Tang X; Misztal PK; Goldstein AH
    Environ Sci Technol; 2019 Jul; 53(14):8262-8270. PubMed ID: 31260270
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modification of cleaning product formulations could improve indoor air quality.
    Carslaw N; Shaw D
    Indoor Air; 2022 Mar; 32(3):e13021. PubMed ID: 35347794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Yields and Variability of Ozone Reaction Products from Human Skin.
    Morrison GC; Eftekhari A; Majluf F; Krechmer JE
    Environ Sci Technol; 2021 Jan; 55(1):179-187. PubMed ID: 33337871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reaction rates of ozone and terpenes adsorbed to model indoor surfaces.
    Springs M; Wells JR; Morrison GC
    Indoor Air; 2011 Aug; 21(4):319-27. PubMed ID: 21204992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of an ion generator on indoor air quality in a residential room.
    Waring MS; Siegel JA
    Indoor Air; 2011 Aug; 21(4):267-76. PubMed ID: 21118308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unanticipated Hydrophobicity Increases of Squalene and Human Skin Oil Films Upon Ozone Exposure.
    Butman JL; Thomson RJ; Geiger FM
    J Phys Chem B; 2022 Nov; 126(45):9417-9423. PubMed ID: 36331532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings.
    Hubbard HF; Coleman BK; Sarwar G; Corsi RL
    Indoor Air; 2005 Dec; 15(6):432-44. PubMed ID: 16268833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations.
    Niu X; Ho SSH; Ho KF; Huang Y; Cao J; Shen Z; Sun J; Wang X; Wang Y; Lee S; Huang R
    Sci Total Environ; 2017 Feb; 579():212-220. PubMed ID: 27842959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ozone Initiates Human-Derived Emission of Nanocluster Aerosols.
    Yang S; Licina D; Weschler CJ; Wang N; Zannoni N; Li M; Vanhanen J; Langer S; Wargocki P; Williams J; Bekö G
    Environ Sci Technol; 2021 Nov; 55(21):14536-14545. PubMed ID: 34672572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.