BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 27943461)

  • 21. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases.
    Kim D; Hager M; Brant E; Budak H
    Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas9 Based Genome Editing in Wheat.
    Smedley MA; Hayta S; Clarke M; Harwood WA
    Curr Protoc; 2021 Mar; 1(3):e65. PubMed ID: 33687760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA.
    Zhang Y; Liang Z; Zong Y; Wang Y; Liu J; Chen K; Qiu JL; Gao C
    Nat Commun; 2016 Aug; 7():12617. PubMed ID: 27558837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination.
    Huang TK; Puchta H
    Plant Cell Rep; 2019 Apr; 38(4):443-453. PubMed ID: 30673818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precise and heritable gene targeting in rice using a sequential transformation strategy.
    Zhang W; Wang R; Kong D; Peng F; Chen M; Zeng W; Giaume F; He S; Zhang H; Wang Z; Kyozuka J; Zhu JK; Fornara F; Miki D
    Cell Rep Methods; 2023 Jan; 3(1):100389. PubMed ID: 36814841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expanding the range of editable targets in the wheat genome using the variants of the Cas12a and Cas9 nucleases.
    Wang W; Tian B; Pan Q; Chen Y; He F; Bai G; Akhunova A; Trick HN; Akhunov E
    Plant Biotechnol J; 2021 Dec; 19(12):2428-2441. PubMed ID: 34270168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement.
    Sun Y; Li J; Xia L
    Front Plant Sci; 2016; 7():1928. PubMed ID: 28066481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In planta gene targeting can be enhanced by the use of CRISPR/Cas12a.
    Wolter F; Puchta H
    Plant J; 2019 Dec; 100(5):1083-1094. PubMed ID: 31381206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum.
    Li R; Li R; Li X; Fu D; Zhu B; Tian H; Luo Y; Zhu H
    Plant Biotechnol J; 2018 Feb; 16(2):415-427. PubMed ID: 28640983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas9-induced Targeted Mutagenesis and Gene Replacement to Generate Long-shelf Life Tomato Lines.
    Yu QH; Wang B; Li N; Tang Y; Yang S; Yang T; Xu J; Guo C; Yan P; Wang Q; Asmutola P
    Sci Rep; 2017 Sep; 7(1):11874. PubMed ID: 28928381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeted mutagenesis in plants using Beet curly top virus for efficient delivery of CRISPR/Cas12a components.
    Eini O; Schumann N; Niessen M; Varrelmann M
    N Biotechnol; 2022 Mar; 67():1-11. PubMed ID: 34896246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR-based genome editing in wheat: a comprehensive review and future prospects.
    Kumar R; Kaur A; Pandey A; Mamrutha HM; Singh GP
    Mol Biol Rep; 2019 Jun; 46(3):3557-3569. PubMed ID: 30941642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat.
    Li J; Wang Z; He G; Ma L; Deng XW
    J Genet Genomics; 2020 May; 47(5):263-272. PubMed ID: 32694014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant cell-directed control of virion sense gene expression in wheat dwarf virus.
    Gooding PS; Batty NP; Goldsbrough AP; Mullineaux PM
    Nucleic Acids Res; 1999 Apr; 27(7):1709-18. PubMed ID: 10076003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene Targeting Facilitated by Engineered Sequence-Specific Nucleases: Potential Applications for Crop Improvement.
    Miki D; Wang R; Li J; Kong D; Zhang L; Zhu JK
    Plant Cell Physiol; 2021 Oct; 62(5):752-765. PubMed ID: 33638992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved CRISPR/Cas9 gene editing by fluorescence activated cell sorting of green fluorescence protein tagged protoplasts.
    Petersen BL; Möller SR; Mravec J; Jørgensen B; Christensen M; Liu Y; Wandall HH; Bennett EP; Yang Z
    BMC Biotechnol; 2019 Jun; 19(1):36. PubMed ID: 31208390
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Lawrenson T; Hinchliffe A; Clarke M; Morgan Y; Harwood W
    Front Genome Ed; 2021; 3():663380. PubMed ID: 34713258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application and development of genome editing technologies to the Solanaceae plants.
    Yamamoto T; Kashojiya S; Kamimura S; Kameyama T; Ariizumi T; Ezura H; Miura K
    Plant Physiol Biochem; 2018 Oct; 131():37-46. PubMed ID: 29523384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny.
    Schiml S; Fauser F; Puchta H
    Plant J; 2014 Dec; 80(6):1139-50. PubMed ID: 25327456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.