These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 27943655)

  • 61. Pulsed Electrochemical Carbon Monoxide Reduction on Oxide-Derived Copper Catalyst.
    Strain JM; Gulati S; Pishgar S; Spurgeon JM
    ChemSusChem; 2020 Jun; 13(11):3028-3033. PubMed ID: 32267609
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ag-Cu catalysts for ethylene epoxidation: selectivity and activity descriptors.
    Nguyen NL; de Gironcoli S; Piccinin S
    J Chem Phys; 2013 May; 138(18):184707. PubMed ID: 23676064
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-Rate CO
    Li H; Liu T; Wei P; Lin L; Gao D; Wang G; Bao X
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14329-14333. PubMed ID: 33837619
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Controllable CO adsorption determines ethylene and methane productions from CO
    Bai H; Cheng T; Li S; Zhou Z; Yang H; Li J; Xie M; Ye J; Ji Y; Li Y; Zhou Z; Sun S; Zhang B; Peng H
    Sci Bull (Beijing); 2021 Jan; 66(1):62-68. PubMed ID: 36654315
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles.
    Reske R; Mistry H; Behafarid F; Roldan Cuenya B; Strasser P
    J Am Chem Soc; 2014 May; 136(19):6978-86. PubMed ID: 24746172
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrochemical interfacial influences on deoxygenation and hydrogenation reactions in CO reduction on a Cu(100) surface.
    Sheng T; Lin WF; Sun SG
    Phys Chem Chem Phys; 2016 Jun; 18(22):15304-11. PubMed ID: 27211005
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Potential Link between Cu Surface and Selective CO
    Tomboc GM; Choi S; Kwon T; Hwang YJ; Lee K
    Adv Mater; 2020 Apr; 32(17):e1908398. PubMed ID: 32134526
    [TBL] [Abstract][Full Text] [Related]  

  • 68. NHC-Ag/Pd-Catalyzed Reductive Carboxylation of Terminal Alkynes with CO
    Yu D; Zhou F; Lim DS; Su H; Zhang Y
    ChemSusChem; 2017 Mar; 10(5):836-841. PubMed ID: 28044419
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structural diversity of copper-CO2 complexes: infrared spectra and structures of [Cu(CO2)n]- clusters.
    Knurr BJ; Weber JM
    J Phys Chem A; 2014 Nov; 118(44):10246-51. PubMed ID: 25317936
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Manipulating local coordination of copper single atom catalyst enables efficient CO
    Dai Y; Li H; Wang C; Xue W; Zhang M; Zhao D; Xue J; Li J; Luo L; Liu C; Li X; Cui P; Jiang Q; Zheng T; Gu S; Zhang Y; Xiao J; Xia C; Zeng J
    Nat Commun; 2023 Jun; 14(1):3382. PubMed ID: 37291114
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Morphological and Compositional Design of Pd-Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO
    Zhu W; Zhang L; Yang P; Chang X; Dong H; Li A; Hu C; Huang Z; Zhao ZJ; Gong J
    Small; 2018 Feb; 14(7):. PubMed ID: 29280288
    [TBL] [Abstract][Full Text] [Related]  

  • 72. New CO2 capture process for hydrogen production combining Ca and Cu chemical loops.
    Abanades JC; Murillo R; Fernandez JR; Grasa G; Martínez I
    Environ Sci Technol; 2010 Sep; 44(17):6901-4. PubMed ID: 20704282
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Laser-Prepared CuZn Alloy Catalyst for Selective Electrochemical Reduction of CO
    Feng Y; Li Z; Liu H; Dong C; Wang J; Kulinich SA; Du X
    Langmuir; 2018 Nov; 34(45):13544-13549. PubMed ID: 30339409
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bio-inspired hydrophobicity promotes CO
    Wakerley D; Lamaison S; Ozanam F; Menguy N; Mercier D; Marcus P; Fontecave M; Mougel V
    Nat Mater; 2019 Nov; 18(11):1222-1227. PubMed ID: 31384032
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0.
    Cheng T; Xiao H; Goddard WA
    J Phys Chem Lett; 2015 Dec; 6(23):4767-73. PubMed ID: 26562750
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adsorption study of CO2, CH4, N2, and H2O on an interwoven copper carboxylate metal-organic framework (MOF-14).
    Karra JR; Grabicka BE; Huang YG; Walton KS
    J Colloid Interface Sci; 2013 Feb; 392():331-336. PubMed ID: 23158044
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhancement of CO2 selectivity in a pillared pcu MOM platform through pillar substitution.
    Nugent P; Rhodus V; Pham T; Tudor B; Forrest K; Wojtas L; Space B; Zaworotko M
    Chem Commun (Camb); 2013 Feb; 49(16):1606-8. PubMed ID: 23340547
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Application of Pulse Radiolysis to Mechanistic Investigations of Catalysis Relevant to Artificial Photosynthesis.
    Grills DC; Polyansky DE; Fujita E
    ChemSusChem; 2017 Nov; 10(22):4359-4373. PubMed ID: 28898568
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Highly Selective CO
    Yi JD; Xie R; Xie ZL; Chai GL; Liu TF; Chen RP; Huang YB; Cao R
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23641-23648. PubMed ID: 32926542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.