These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 2794484)
21. [Projections of the nucleus praepositus hypoglossi to the cerebellum in the cat]. López-Beltrán A; Ribas J; López-Barneo J; Delgado-García JM Rev Esp Fisiol; 1983 Mar; 39(1):1-6. PubMed ID: 6191369 [TBL] [Abstract][Full Text] [Related]
22. Supramedullary afferents of the nucleus raphe magnus in the rat: a study using the transcannula HRP gel and autoradiographic techniques. Carlton SM; Leichnetz GR; Young EG; Mayer DJ J Comp Neurol; 1983 Feb; 214(1):43-58. PubMed ID: 6841675 [TBL] [Abstract][Full Text] [Related]
23. Afferent connections to the amygdaloid complex of the rat with some observations in the cat. III. Afferents from the lower brain stem. Ottersen OP J Comp Neurol; 1981 Nov; 202(3):335-56. PubMed ID: 7298902 [TBL] [Abstract][Full Text] [Related]
24. Origin of cerebellar projections to the region of the oculomotor complex, medial pontine reticular formation, and superior colliculus in New World monkeys: a retrograde horseradish peroxidase study. Gonzalo-Ruiz A; Leichnetz GR; Smith DJ J Comp Neurol; 1988 Feb; 268(4):508-26. PubMed ID: 3356803 [TBL] [Abstract][Full Text] [Related]
25. Subcortical connections of the superior colliculus in the mustache bat, Pteronotus parnellii. Covey E; Hall WC; Kobler JB J Comp Neurol; 1987 Sep; 263(2):179-97. PubMed ID: 3667975 [TBL] [Abstract][Full Text] [Related]
26. The afferent connections of the tectum mesencephali in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. Smeets WJ J Comp Neurol; 1982 Feb; 205(2):139-52. PubMed ID: 7076889 [TBL] [Abstract][Full Text] [Related]
27. Anatomical connections of the prepositus and abducens nuclei in the squirrel monkey. Belknap DB; McCrea RA J Comp Neurol; 1988 Feb; 268(1):13-28. PubMed ID: 3346381 [TBL] [Abstract][Full Text] [Related]
28. The ascending input to the midbrain periaqueductal gray of the primate. Mantyh PW J Comp Neurol; 1982 Oct; 211(1):50-64. PubMed ID: 7174883 [TBL] [Abstract][Full Text] [Related]
29. [Study of cerebellar connections in the turtle using the technic of axonal transport of horseradish peroxidase]. Belekhova MG; Gaidaenko GV Neirofiziologiia; 1985; 17(6):786-94. PubMed ID: 4088383 [TBL] [Abstract][Full Text] [Related]
30. Chemoarchitectonics of the brainstem in infrared sensitive and nonsensitive snakes. Kusunoki T; Kishida R; Kadota T; Goris RC J Hirnforsch; 1987; 28(1):27-43. PubMed ID: 2885370 [TBL] [Abstract][Full Text] [Related]
31. The reticulo-raphe connection. An experimental study using the method of antegrade degeneration and the method of retrograde horseradish peroxidase transport tracing in the rat. Petrovický P J Hirnforsch; 1981; 22(1):33-45. PubMed ID: 7240725 [TBL] [Abstract][Full Text] [Related]
32. Topographical representation in rabbit cerebellar flocculus for various afferent inputs from the brainstem investigated by means of retrograde axonal transport of horseradish peroxidase. Yamamoto M Neurosci Lett; 1979 Apr; 12(1):29-34. PubMed ID: 460699 [TBL] [Abstract][Full Text] [Related]
33. Topographic organization of the brainstem afferents to the mediodorsal thalamic nucleus. Velayos JL; Reinoso-Suarez F J Comp Neurol; 1982 Mar; 206(1):17-27. PubMed ID: 7096629 [TBL] [Abstract][Full Text] [Related]
34. [Primary trigeminal projection to the brain stem-reticular formation. Experimental study in the rat]. Insausti R; Gonzalo Sanz LM Rev Med Univ Navarra; 1981 Mar; 25(1):41-6. PubMed ID: 6977802 [TBL] [Abstract][Full Text] [Related]
35. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain. Abols IA; Basbaum AI J Comp Neurol; 1981 Sep; 201(2):285-97. PubMed ID: 7287930 [TBL] [Abstract][Full Text] [Related]
36. Amygdalopetal projections in the cat. II. Subcortical afferent connections. A study with retrograde tracing techniques. Russchen FT J Comp Neurol; 1982 May; 207(2):157-76. PubMed ID: 7096644 [TBL] [Abstract][Full Text] [Related]
37. Functional organization of the ventral lateral geniculate complex of the tree shrew (Tupaia belangeri): II. Connections with the cortex, thalamus, and brainstem. Conley M; Friederich-Ecsy B J Comp Neurol; 1993 Feb; 328(1):21-42. PubMed ID: 7679121 [TBL] [Abstract][Full Text] [Related]
38. Brainstem origin of serotonin- and enkephalin-immunoreactive afferents to the opossum's cerebellum. Walker JJ; Bishop GA; Ho RH; King JS J Comp Neurol; 1988 Oct; 276(4):481-97. PubMed ID: 3198786 [TBL] [Abstract][Full Text] [Related]
39. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain. Ten Donkelaar HJ; De Boer-Van Huizen R J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959 [TBL] [Abstract][Full Text] [Related]
40. Organization of diencephalic and brainstem afferent projections to the lateral septum in the rat. Luiten PG; Kuipers F; Schuitmaker H Neurosci Lett; 1982 Jun; 30(3):211-6. PubMed ID: 6180361 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]