These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27951444)

  • 1. Modified Poisson equations for calculating solvation free energy.
    Yang PK
    Biophys Chem; 2017 Feb; 221():26-40. PubMed ID: 27951444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating the excluded solvent volume and surface charges for computing solvation free energy.
    Yang PK
    J Comput Chem; 2014 Jan; 35(1):62-9. PubMed ID: 24129882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategy using three layers of surface charge for computing solvation free energy of ions.
    Yang PK
    Biophys Chem; 2013 Dec; 184():87-94. PubMed ID: 24157373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining the polarizable Drude force field with a continuum electrostatic Poisson-Boltzmann implicit solvation model.
    Aleksandrov A; Lin FY; Roux B; MacKerell AD
    J Comput Chem; 2018 Aug; 39(22):1707-1719. PubMed ID: 29737546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of excluded solvent volume effects in computing hydration free energies.
    Yang PK; Lim C
    J Phys Chem B; 2008 Nov; 112(47):14863-8. PubMed ID: 18956834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution.
    Fraternali F; Van Gunsteren WF
    J Mol Biol; 1996 Mar; 256(5):939-48. PubMed ID: 8601844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameterization of the Hamiltonian Dielectric Solvent (HADES) Reaction-Field Method for the Solvation Free Energies of Amino Acid Side-Chain Analogs.
    Zachmann M; Mathias G; Antes I
    Chemphyschem; 2015 Jun; 16(8):1739-49. PubMed ID: 25820235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrepancy in the near-solute electric dipole moment calculated from the electric field.
    Yang PK
    J Comput Chem; 2011 Oct; 32(13):2783-99. PubMed ID: 21717477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to model the near-solute solvent molecular density/polarization.
    Yang PK; Lim C
    J Comput Chem; 2009 Apr; 30(5):700-9. PubMed ID: 18711719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of solvation free energy from quantum mechanical charge density and continuum dielectric theory.
    Wang M; Wong CF
    J Phys Chem A; 2006 Apr; 110(14):4873-9. PubMed ID: 16599457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.
    Sun H; Wen J; Zhao Y; Li B; McCammon JA
    J Chem Phys; 2015 Dec; 143(24):243110. PubMed ID: 26723595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular density functional theory of solvation: from polar solvents to water.
    Zhao S; Ramirez R; Vuilleumier R; Borgis D
    J Chem Phys; 2011 May; 134(19):194102. PubMed ID: 21599039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters.
    Geerke DP; van Gunsteren WF
    J Phys Chem B; 2007 Jun; 111(23):6425-36. PubMed ID: 17508737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Halothane solvation in water and organic solvents from molecular simulations with new polarizable potential function.
    Subbotina JO; Johannes J; Lev B; Noskov SY
    J Phys Chem B; 2010 May; 114(19):6401-8. PubMed ID: 20411978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-size effect on the charging free energy of protein in explicit solvent.
    Ekimoto T; Matubayasi N; Ikeguchi M
    J Chem Theory Comput; 2015 Jan; 11(1):215-23. PubMed ID: 26574219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A refined, efficient mean solvation force model that includes the interior volume contribution.
    Allison JR; Boguslawski K; Fraternali F; van Gunsteren WF
    J Phys Chem B; 2011 Apr; 115(15):4547-57. PubMed ID: 21434626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ
    J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.