BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27951495)

  • 1. Ionomic and physiological responses to low nitrogen stress in Tibetan wild and cultivated barley.
    Quan X; Zeng J; Han Z; Zhang G
    Plant Physiol Biochem; 2017 Feb; 111():257-265. PubMed ID: 27951495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress.
    Quan X; Qian Q; Ye Z; Zeng J; Han Z; Zhang G
    J Plant Physiol; 2016 Nov; 206():59-67. PubMed ID: 27693987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome profiling analysis for two Tibetan wild barley genotypes in responses to low nitrogen.
    Quan X; Zeng J; Ye L; Chen G; Han Z; Shah JM; Zhang G
    BMC Plant Biol; 2016 Jan; 16():30. PubMed ID: 26817455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic analysis reveals adaptive strategies to chronic low nitrogen in Tibetan wild barley.
    Quan X; Zeng J; Chen G; Zhang G
    BMC Plant Biol; 2019 Feb; 19(1):68. PubMed ID: 30744569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue metabolic responses to salt stress in wild and cultivated barley.
    Wu D; Cai S; Chen M; Ye L; Chen Z; Zhang H; Dai F; Wu F; Zhang G
    PLoS One; 2013; 8(1):e55431. PubMed ID: 23383190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation Strategies of Halophytic Barley
    Isayenkov S; Hilo A; Rizzo P; Tandron Moya YA; Rolletschek H; Borisjuk L; Radchuk V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley.
    Shen Q; Fu L; Dai F; Jiang L; Zhang G; Wu D
    BMC Genomics; 2016 Nov; 17(1):889. PubMed ID: 27821058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the differentially accumulated proteins associated with low phosphorus tolerance in a Tibetan wild barley accession.
    Nadira UA; Ahmed IM; Zeng J; Wu F; Zhang G
    J Plant Physiol; 2016 Jul; 198():10-22. PubMed ID: 27111503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley.
    Shen Q; Yu J; Fu L; Wu L; Dai F; Jiang L; Wu D; Zhang G
    Plant Physiol Biochem; 2018 Feb; 123():319-330. PubMed ID: 29289898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of proteins associated with ion homeostasis and salt tolerance in barley.
    Wu D; Shen Q; Qiu L; Han Y; Ye L; Jabeen Z; Shu Q; Zhang G
    Proteomics; 2014 Jun; 14(11):1381-92. PubMed ID: 24616274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of the genetic basis of nitrogen use efficiency in wild and cultivated barley.
    Shah JM; Muntaha ST; Ali E; Khan AA; Zaidi SHR; Shahzad AN; Hassan Z; Nawaz A; Rashid M; Bukhari SAH
    Physiol Mol Biol Plants; 2019 Nov; 25(6):1435-1444. PubMed ID: 31736546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley.
    Ahmed IM; Nadira UA; Cao F; He X; Zhang G; Wu F
    Planta; 2016 Apr; 243(4):973-85. PubMed ID: 26748913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Insights into Potassium-Conferred Drought Stress Tolerance in Cultivated and Tibetan Wild Barley: Differential Osmoregulation, Nutrient Retention, Secondary Metabolism and Antioxidative Defense Capacity.
    Sehar S; Adil MF; Zeeshan M; Holford P; Cao F; Wu F; Wang Y
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root plasticity and Pi recycling within plants contribute to low-P tolerance in Tibetan wild barley.
    Long L; Ma X; Ye L; Zeng J; Chen G; Zhang G
    BMC Plant Biol; 2019 Aug; 19(1):341. PubMed ID: 31382871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking waterlogging tolerance with Mn²⁺ toxicity: a case study for barley.
    Huang X; Shabala S; Shabala L; Rengel Z; Wu X; Zhang G; Zhou M
    Plant Biol (Stuttg); 2015 Jan; 17(1):26-33. PubMed ID: 24985051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tolerance to Drought, Low pH and Al Combined Stress in Tibetan Wild Barley Is Associated with Improvement of ATPase and Modulation of Antioxidant Defense System.
    Ahmed IM; Nadira UA; Qiu CW; Cao F; Zhang G; Holford P; Wu F
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30423885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and biochemical responses of the forage legume Trifolium alexandrinum to different saline conditions and nitrogen levels.
    Zouhaier B; Mariem M; Mokded R; Rouached A; Alsane K; Chedly A; Abderrazek S; Abdallah A
    J Plant Res; 2016 May; 129(3):423-34. PubMed ID: 26818949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Identification and Characterization of Drought Stress Responsive microRNAs in Tibetan Wild Barley.
    Qiu CW; Liu L; Feng X; Hao PF; He X; Cao F; Wu F
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley.
    Wu D; Shen Q; Cai S; Chen ZH; Dai F; Zhang G
    Plant Cell Physiol; 2013 Dec; 54(12):1976-88. PubMed ID: 24058150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley.
    Wu L; Yu J; Shen Q; Huang L; Wu D; Zhang G
    BMC Genomics; 2018 Jul; 19(1):560. PubMed ID: 30064381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.