These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 27951502)

  • 1. Enhancing the bandwidth of piezoelectric composite transducers for air-coupled non-destructive evaluation.
    Banks R; O'Leary RL; Hayward G
    Ultrasonics; 2017 Mar; 75():132-144. PubMed ID: 27951502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband 1-3 Piezoelectric Composite Transducer Design Using Sierpinski Gasket Fractal Geometry.
    Fang H; Qiu Z; Mulholland AJ; O'Leary RL; Gachagan A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2429-2439. PubMed ID: 30296221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformally Large-Area Single-Crystal Piezocomposites with High Performance for Acoustic Transducers.
    Jia N; Wang T; Ning L; Ma Z; Dang Y; Li CC; Du H; Li F; Xu Z
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36611-36619. PubMed ID: 37471046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing Performances of 1-3 Piezocomposite Ultrasonic Transducer by Alternating Current Poling Method.
    Zhu K; Ma J; Liu Y; Shen B; Huo D; Yang Y; Qi X; Sun E; Zhang R
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of functionally graded piezoelectric ultrasonic transducers.
    Rubio WM; Buiochi F; Adamowski JC; Silva EC
    Ultrasonics; 2009 May; 49(4-5):484-94. PubMed ID: 19230947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined genetic algorithm and finite element method for the determination of a practical elasto-electric set for 1-3 piezocomposite phases.
    Rouffaud R; Hladky-Hennion AC; Levassort F
    Ultrasonics; 2017 May; 77():214-223. PubMed ID: 28254566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional hybrid model for predicting air-coupled generation of guided waves in composite material plates.
    Masmoudi M; Castaings M
    Ultrasonics; 2012 Jan; 52(1):81-92. PubMed ID: 21782203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogenization of periodic 1-3 piezocomposite using wave propagation: Toward an experimental method.
    Balé A; Rouffaud R; Levassort F; Brenner R; Hladky-Hennion AC
    J Acoust Soc Am; 2021 May; 149(5):3122. PubMed ID: 34241119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super-Cell Piezoelectric Composite With 1-3 Connectivity.
    Rouffaud R; Levassort F; Pham Thi M; Bantignies C; Lethiecq M; Hladky-Hennion AC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2215-2223. PubMed ID: 27913333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic guided wave propagation in a periodic array of multi-layered piezoelectric plates with finite cross-sections.
    Cortes DH; Datta SK; Mukdadi OM
    Ultrasonics; 2010 Mar; 50(3):347-56. PubMed ID: 19732930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design considerations for piezoelectric polymer ultrasound transducers.
    Brown LF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1377-96. PubMed ID: 18238684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of triangular pillar geometry on high- frequency piezocomposite transducers.
    Yin J; Lee M; Brown J; Cherin E; Foster F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):957-68. PubMed ID: 20378458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and reception of ultrasonic guided waves in composite plates using conformable piezoelectric transmitters and optical-fiber detectors.
    Gachagan A; Hayward G; McNab A; Reynolds P; Pierce SG; Philp WR; Culshaw B
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):72-81. PubMed ID: 18238400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Phase-Canceled Backing Layer for Ultrasound Linear Array Transducer: Modeling and Experimental Verification.
    Kwon DS; Sung JH; Park CY; Jeong EY; Jeong JS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):770-778. PubMed ID: 31689189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harmonic analysis of lossy, piezoelectric composite transducers using the plane wave expansion method.
    Orr LA; Mulholland AJ; O'Leary RL; Hayward G
    Ultrasonics; 2008 Dec; 48(8):652-63. PubMed ID: 18433820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible ultrasonic transducers incorporating piezoelectric fibres.
    Harvey G; Gachagan A; Mackersie JW; McCunnie T; Banks R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1999-2009. PubMed ID: 19812003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous ceramics as backing element for high-temperature transducers.
    Amini M; Coyle T; Sinclair T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Feb; 62(2):360-72. PubMed ID: 25643085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.
    Amini MH; Sinclair AN; Coyle TW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):448-55. PubMed ID: 26829787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused ultrasound transducer for thermal treatment.
    Umemura S
    Int J Hyperthermia; 2015 Mar; 31(2):216-21. PubMed ID: 25753368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time nondestructive evaluation of fiber composite laminates using low-frequency Lamb waves.
    Díaz Valdés SH; Soutis C
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):2026-33. PubMed ID: 12051422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.