These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27951571)

  • 1. Fundamental Characteristics of the Newly Developed ATA™ Membrane Dialyzer.
    Sunohara T; Masuda T
    Contrib Nephrol; 2017; 189():215-221. PubMed ID: 27951571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport Characteristics of Asymmetric Cellulose Triacetate Hemodialysis Membranes.
    Kim TR; Hadidi M; Motevalian SP; Sunohara T; Zydney AL
    Blood Purif; 2018; 45(1-3):46-52. PubMed ID: 29161718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Plasma Proteins on the Transport and Surface Characteristics of Polysulfone/Polyethersulfone and Asymmetric Cellulose Triacetate High Flux Dialyzers.
    Kim TR; Hadidi M; Motevalian SP; Sunohara T; Zydney AL
    Artif Organs; 2018 Nov; 42(11):1070-1077. PubMed ID: 29774568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of blood adsorption onto dialysis membranes by time-of-flight secondary ion mass spectrometry and near-field infrared microscopy.
    Aoyagi S; Abe K; Yamagishi T; Iwai H; Yamaguchi S; Sunohara T
    Anal Bioanal Chem; 2017 Nov; 409(27):6387-6396. PubMed ID: 28842768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The past, present and future of the dialyzer.
    Mineshima M
    Contrib Nephrol; 2015; 185():8-14. PubMed ID: 26023010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric triacetate membrane keeps high water flux during ultrafiltration: in vitro study.
    Tange Y; Takesawa S; Yoshitake S
    J Artif Organs; 2017 Dec; 20(4):399-402. PubMed ID: 28685358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose triacetate as a high-performance membrane.
    Sunohara T; Masuda T
    Contrib Nephrol; 2011; 173():156-163. PubMed ID: 21865788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of protein adsorption capacity of different haemodialysis membranes.
    Urbani A; Lupisella S; Sirolli V; Bucci S; Amoroso L; Pavone B; Pieroni L; Sacchetta P; Bonomini M
    Mol Biosyst; 2012 Apr; 8(4):1029-39. PubMed ID: 22249890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a new cellulose triacetate membrane with a microgradient porous structure for hemodialysis.
    Akizawa T; Kinugasa E; Sato Y; Kohjiro S; Naitoh H; Azuma M; Mizutani S; Ideura T
    ASAIO J; 1998; 44(5):M584-6. PubMed ID: 9804500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical characterization of Dicea a new cellulose membrane for haemodialysis.
    Hoenich NA; Woffindin C; Cox PJ; Goldfinch M; Roberts SJ
    Clin Nephrol; 1997 Oct; 48(4):253-9. PubMed ID: 9352161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection guidelines for high-performance membrane.
    Sanaka T; Koremoto M
    Contrib Nephrol; 2011; 173():30-35. PubMed ID: 21865773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric cellulose triacetate is a safe and effective alternative for online haemodiafiltration.
    Albalate Ramón M; Martínez Miguel P; Bohorquez L; de Sequera P; Bouarich H; Pérez-García R; Rodríguez Puyol D; Barril G; Sánchez Tomero JA; Giorgi M; Ramirez Chamond MR
    Nefrologia (Engl Ed); 2018; 38(3):315-320. PubMed ID: 29454540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic Characterization of a New asymmetric Cellulose Triacetate Membrane for Hemodialysis.
    Ronci M; Leporini L; Felaco P; Sirolli V; Pieroni L; Greco V; Aceto A; Urbani A; Bonomini M
    Proteomics Clin Appl; 2018 Nov; 12(6):e1700140. PubMed ID: 29808585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adherence of blood cells to dialyzer membranes as a measure of biocompatibility.
    Kjellstrand P; Okmark P; Odselius R; Thysell H; Riede G; Holmquist B
    Int J Artif Organs; 1991 Nov; 14(11):698-702. PubMed ID: 1757156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of cellulose triacetate dialyzer and polysulfone synthetic hemofilter for continuous venovenous hemofiltration in acute renal failure.
    Pichaiwong W; Leelahavanichkul A; Eiam-ong S
    J Med Assoc Thai; 2006 Aug; 89 Suppl 2():S65-72. PubMed ID: 17044456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo biocompatibility of substituted cellulose and synthetic membranes.
    Mandolfo S; Tetta C; David S; Gervasio R; Ognibene D; Wratten ML; Tessore E; Imbasciati E
    Int J Artif Organs; 1997 Nov; 20(11):603-9. PubMed ID: 9464869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility and performance of a modified cellulosic and a synthetic high flux dialyzer. A randomized crossover comparison between cellulose triacetate and polysulphon.
    Grooteman MP; Nubé MJ; van Limbeek J; van Houte AJ; Daha MR; van Geelen JA
    ASAIO J; 1995; 41(2):215-20. PubMed ID: 7640431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of cellulosic membranes and their blood compatibility.
    Paul D; Malsch G; Bossin E; Wiese F; Thomaneck U; Brown GS; Werner H; Falkenhagen D
    Artif Organs; 1990 Apr; 14(2):122-5. PubMed ID: 2350257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the effects of cellulose triacetate and polysulfone membrane on GPIIb/IIIa and platelet activation.
    Kuragano T; Kuno T; Takahashi Y; Yamamoto C; Nagura Y; Takahashi S; Kanmatsuse K
    Blood Purif; 2003; 21(2):176-82. PubMed ID: 12601261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility aspects of cellophane, cellulose acetate, polyacrylonitrile, polysulfone and polycarbonate hemodialyzers.
    Smeby LC; Widerøe TE; Balstad T; Jørstad S
    Blood Purif; 1986; 4(1-3):93-101. PubMed ID: 3730167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.