These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27951674)

  • 21. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P; Kongsted J; Genheden S; Ryde U
    Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate aqueous proton dissociation constants calculations for selected angiotensin-converting enzyme inhibitors.
    Sramko M; Smiesko M; Remko M
    J Biomol Struct Dyn; 2008 Jun; 25(6):599-608. PubMed ID: 18399693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational determination of aqueous pKa values of protonated benzimidazoles (part 1).
    Brown TN; Mora-Diez N
    J Phys Chem B; 2006 May; 110(18):9270-9. PubMed ID: 16671744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple time step molecular dynamics in the optimized isokinetic ensemble steered with the molecular theory of solvation: accelerating with advanced extrapolation of effective solvation forces.
    Omelyan I; Kovalenko A
    J Chem Phys; 2013 Dec; 139(24):244106. PubMed ID: 24387356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pKa calculations of aliphatic amines, diamines, and aminoamides via density functional theory with a Poisson-Boltzmann continuum solvent model.
    Bryantsev VS; Diallo MS; Goddard WA
    J Phys Chem A; 2007 May; 111(20):4422-30. PubMed ID: 17469810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets.
    Jain R; Bally T; Rablen PR
    J Org Chem; 2009 Jun; 74(11):4017-23. PubMed ID: 19435298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the protonation state of drug molecules: the case of aztreonam.
    Díaz N; Sordo TL; Suárez D; Méndez R; Villacorta JM; Simón L; Rico M; Jiménez MA
    J Med Chem; 2006 Jun; 49(11):3235-43. PubMed ID: 16722641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformations of serine in aqueous solutions as revealed by vibrational circular dichroism.
    Zhu P; Yang G; Poopari MR; Bie Z; Xu Y
    Chemphyschem; 2012 Apr; 13(5):1272-81. PubMed ID: 22334359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K; Hannongbua S; Feig M
    J Comput Chem; 2008 Apr; 29(5):673-85. PubMed ID: 17849388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative complexation energies for Li(+) ion in solution: molecular level solvation versus polarizable continuum model study.
    Eilmes A; Kubisiak P
    J Phys Chem A; 2010 Jan; 114(2):973-9. PubMed ID: 20030307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting p
    Hunt P; Hosseini-Gerami L; Chrien T; Plante J; Ponting DJ; Segall M
    J Chem Inf Model; 2020 Jun; 60(6):2989-2997. PubMed ID: 32357002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An extended aqueous solvation model based on atom-weighted solvent accessible surface areas: SAWSA v2.0 model.
    Hou T; Zhang W; Huang Q; Xu X
    J Mol Model; 2005 Feb; 11(1):26-40. PubMed ID: 15565273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Comprehensive Study of Factors Affecting the Prediction of the p
    Verma S; Nair NN
    J Phys Chem B; 2024 Aug; 128(30):7304-7312. PubMed ID: 39023356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules.
    Roos K; Wu C; Damm W; Reboul M; Stevenson JM; Lu C; Dahlgren MK; Mondal S; Chen W; Wang L; Abel R; Friesner RA; Harder ED
    J Chem Theory Comput; 2019 Mar; 15(3):1863-1874. PubMed ID: 30768902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties.
    Beerepoot MT; Steindal AH; List NH; Kongsted J; Olsen JM
    J Chem Theory Comput; 2016 Apr; 12(4):1684-95. PubMed ID: 26938368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Explicit treatment of active-site waters enhances quantum mechanical/implicit solvent scoring: Inhibition of CDK2 by new pyrazolo[1,5-a]pyrimidines.
    Hylsová M; Carbain B; Fanfrlík J; Musilová L; Haldar S; Köprülüoğlu C; Ajani H; Brahmkshatriya PS; Jorda R; Kryštof V; Hobza P; Echalier A; Paruch K; Lepšík M
    Eur J Med Chem; 2017 Jan; 126():1118-1128. PubMed ID: 28039837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Quantum-Chemical Calculations of Acid Dissociation Constants from Free-Energy Relationships.
    Pracht P; Grimme S
    J Phys Chem A; 2021 Jul; 125(25):5681-5692. PubMed ID: 34142841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generalized Born and Explicit Solvent Models for Free Energy Calculations in Organic Solvents: Cyclodextrin Dimerization.
    Zhang H; Tan T; van der Spoel D
    J Chem Theory Comput; 2015 Nov; 11(11):5103-13. PubMed ID: 26574308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.