These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27951683)

  • 1. Insulin Aggregation at a Dynamic Solid-Liquid-Air Triple Interface.
    Frachon T; Bruckert F; Le Masne Q; Monnin E; Weidenhaupt M
    Langmuir; 2016 Dec; 32(49):13009-13019. PubMed ID: 27951683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin aggregation starts at dynamic triple interfaces, originating from solution agitation.
    Chouchane K; Frachon T; Marichal L; Nault L; Vendrely C; Maze A; Bruckert F; Weidenhaupt M
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112451. PubMed ID: 35290820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visible light-induced insulin aggregation on surfaces via photoexcitation of bound thioflavin T.
    Chouchane K; Pignot-Paintrand I; Bruckert F; Weidenhaupt M
    J Photochem Photobiol B; 2018 Apr; 181():89-97. PubMed ID: 29524850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Effect of (LK)nL Peptides on the Onset of Insulin Amyloid Fiber Formation at Hydrophobic Surfaces.
    Chouchane K; Vendrely C; Amari M; Moreaux K; Bruckert F; Weidenhaupt M
    J Phys Chem B; 2015 Aug; 119(33):10543-53. PubMed ID: 26234630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human insulin adsorption kinetics, conformational changes and amyloidal aggregate formation on hydrophobic surfaces.
    Nault L; Guo P; Jain B; Bréchet Y; Bruckert F; Weidenhaupt M
    Acta Biomater; 2013 Feb; 9(2):5070-9. PubMed ID: 23022543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DnaK prevents human insulin amyloid fiber formation on hydrophobic surfaces.
    Ballet T; Brukert F; Mangiagalli P; Bureau C; Boulangé L; Nault L; Perret T; Weidenhaupt M
    Biochemistry; 2012 Mar; 51(11):2172-80. PubMed ID: 22352808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing Liquid-Solid and Vapor-Liquid-Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy.
    Flynn Bolte KT; Balaraman RP; Jiao K; Tustison M; Kirkwood KS; Zhou C; Kohli P
    Langmuir; 2018 Mar; 34(12):3720-3730. PubMed ID: 29486565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligomers, protofibrils and amyloid fibrils from recombinant human lysozyme (rHL): fibrillation process and cytotoxicity evaluation for ARPE-19 cell line.
    Ruiz ED; Almada M; Burboa MG; Taboada P; Mosquera V; Valdez MA; Juárez J
    Colloids Surf B Biointerfaces; 2015 Feb; 126():335-43. PubMed ID: 25618793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Origin of the Combined Effect of Surfaces and Mechanical Agitation on Amyloid Formation.
    Grigolato F; Colombo C; Ferrari R; Rezabkova L; Arosio P
    ACS Nano; 2017 Nov; 11(11):11358-11367. PubMed ID: 29045787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptides that form β-sheets on hydrophobic surfaces accelerate surface-induced insulin amyloidal aggregation.
    Nault L; Vendrely C; Bréchet Y; Bruckert F; Weidenhaupt M
    FEBS Lett; 2013 May; 587(9):1281-6. PubMed ID: 23510797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The presence of an air-water interface affects formation and elongation of α-Synuclein fibrils.
    Campioni S; Carret G; Jordens S; Nicoud L; Mezzenga R; Riek R
    J Am Chem Soc; 2014 Feb; 136(7):2866-75. PubMed ID: 24460028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic electrowetting and dewetting of ionic liquids at a hydrophobic solid-liquid interface.
    Li H; Paneru M; Sedev R; Ralston J
    Langmuir; 2013 Feb; 29(8):2631-9. PubMed ID: 23362860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid assembly of amyloid-beta peptide at a liquid/liquid interface produces unstable beta-sheet fibers.
    Nichols MR; Moss MA; Reed DK; Hoh JH; Rosenberry TL
    Biochemistry; 2005 Jan; 44(1):165-73. PubMed ID: 15628857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces.
    Jung YC; Bhushan B
    J Microsc; 2008 Jan; 229(Pt 1):127-40. PubMed ID: 18173651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced Biofilm Formation at the Air-Liquid-Solid Interface via Introduction of Surfactants.
    Chen P; Lang J; Franklin T; Yu Z; Yang R
    ACS Biomater Sci Eng; 2023 Jul; 9(7):3923-3934. PubMed ID: 33821617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Bacteria from Solids by Bubbles: Effect of Solid Wettability, Interaction Geometry, and Liquid-Vapor Interface Velocity.
    Kriegel AT; Ducker WA
    Langmuir; 2019 Oct; 35(39):12817-12830. PubMed ID: 31448615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear-induced amyloid fibrillization: the role of inertia.
    McBride SA; Sanford SP; Lopez JM; Hirsa AH
    Soft Matter; 2016 Apr; 12(14):3461-7. PubMed ID: 26956731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of a surfactin nanolayer at solid-liquid and air-liquid interfaces.
    Onaizi SA; Nasser MS; Al-Lagtah NM
    Eur Biophys J; 2016 May; 45(4):331-9. PubMed ID: 26649447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.