These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2795290)

  • 1. Diffraction by a circular aperture as a model for three-dimensional optical microscopy.
    Gibson SF; Lanni F
    J Opt Soc Am A; 1989 Sep; 6(9):1357-67. PubMed ID: 2795290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A technique for calculating the amplitude distribution of propagated fields by Gaussian sampling.
    Cywiak M; Morales A; Servín M; Gómez-Medina R
    Opt Express; 2010 Aug; 18(18):19141-55. PubMed ID: 20940809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum a posteriori estimation with Good's roughness for three-dimensional optical-sectioning microscopy.
    Joshi S; Miller MI
    J Opt Soc Am A; 1993 May; 10(5):1078-85. PubMed ID: 8496727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams.
    Moh KJ; Yuan XC; Bu J; Burge RE; Gao BZ
    Appl Opt; 2007 Oct; 46(30):7544-51. PubMed ID: 17952194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational superposition compound eye imaging for extended depth-of-field and field-of-view.
    Nakamura T; Horisaki R; Tanida J
    Opt Express; 2012 Dec; 20(25):27482-95. PubMed ID: 23262698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinically Relevant Optical Properties of Bifocal, Trifocal, and Extended Depth of Focus Intraocular Lenses.
    Gatinel D; Loicq J
    J Refract Surg; 2016 Apr; 32(4):273-80. PubMed ID: 27070236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy.
    Davis BJ; Schlachter SC; Marks DL; Ralston TS; Boppart SA; Carney PS
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2527-42. PubMed ID: 17767224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axial field shaping under high-numerical-aperture focusing.
    Jabbour TG; Kuebler SM
    Opt Lett; 2007 Mar; 32(5):527-9. PubMed ID: 17392910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale depth reconstruction from defocus: within an optical diffraction model.
    Wei Y; Wu C; Dong Z
    Opt Express; 2014 Oct; 22(21):25481-93. PubMed ID: 25401580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy.
    Preza C; Conchello JA
    J Opt Soc Am A Opt Image Sci Vis; 2004 Sep; 21(9):1593-601. PubMed ID: 15384425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional imaging by far-field superlens at visible wavelengths.
    Xiong Y; Liu Z; Sun C; Zhang X
    Nano Lett; 2007 Nov; 7(11):3360-5. PubMed ID: 17918904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser divided-aperture differential confocal sensing technology with improved axial resolution.
    Zhao W; Liu C; Qiu L
    Opt Express; 2012 Nov; 20(23):25979-89. PubMed ID: 23187413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superresolution and convergence properties of the expectation-maximization algorithm for maximum-likelihood deconvolution of incoherent images.
    Conchello JA
    J Opt Soc Am A Opt Image Sci Vis; 1998 Oct; 15(10):2609-19. PubMed ID: 9768508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spherical nanosized focal spot unravels the interior of cells.
    Schmidt R; Wurm CA; Jakobs S; Engelhardt J; Egner A; Hell SW
    Nat Methods; 2008 Jun; 5(6):539-44. PubMed ID: 18488034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic method to optimize aperture design in focal modulation microscopy.
    Duan Y; Sheppard CJ; Rehman S; Chen N
    Opt Lett; 2014 Mar; 39(6):1677-80. PubMed ID: 24690867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of three-dimensional cell imaging obtained with optical microscopy techniques based on defocusing.
    Bianco B; Diaspro A
    Cell Biophys; 1989 Dec; 15(3):189-99. PubMed ID: 2480180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy.
    Gibson SF; Lanni F
    J Opt Soc Am A; 1992 Jan; 9(1):154-66. PubMed ID: 1738047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution.
    Sandberg RL; Song C; Wachulak PW; Raymondson DA; Paul A; Amirbekian B; Lee E; Sakdinawat AE; La-O-Vorakiat C; Marconi MC; Menoni CS; Murnane MM; Rocca JJ; Kapteyn HC; Miao J
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):24-7. PubMed ID: 18162534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation.
    Wang J; Chen W; Zhan Q
    Opt Express; 2010 Oct; 18(21):21965-72. PubMed ID: 20941097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherence vortices in Mie scattering of statistically stationary partially coherent fields.
    Marasinghe ML; Premaratne M; Paganin DM
    Opt Express; 2010 Mar; 18(7):6628-41. PubMed ID: 20389687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.