These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 2795464)

  • 1. Endothelium-dependent contractions induced by angiotensin I and angiotensin II in canine cerebral artery.
    Manabe K; Shirahase H; Usui H; Kurahashi K; Fujiwara M
    J Pharmacol Exp Ther; 1989 Oct; 251(1):317-20. PubMed ID: 2795464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium-dependent contraction induced by platelet-derived substances in canine basilar arteries.
    Shirahase H; Usui H; Shimaji H; Kurahashi K; Fujiwara M
    J Pharmacol Exp Ther; 1990 Oct; 255(1):182-6. PubMed ID: 2213554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the novel water-soluble calcium antagonist (+/-)-3-(4-allyl-1-piperazinyl)-2,2-dimethylpropyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate dihydrochloride on the endothelium-independent and endothelium-dependent contraction in isolated canine cerebral arteries.
    Kanda M; Shirahase H; Wada K; Nakamura S; Matsui H; Fukata F
    Arzneimittelforschung; 1996 Jul; 46(7):663-6. PubMed ID: 8842332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelium-dependent contraction induced by substance P in canine cerebral arteries: involvement of NK1 receptors and thromboxane A2.
    Shirahase H; Murase K; Kanda M; Kurahashi K; Nakamura S
    Life Sci; 1999; 64(3):211-9. PubMed ID: 10027752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelium-independent and endothelium-dependent contractions mediated by P2X- and P2Y-purinoceptors in canine basilar arteries.
    Shirahase H; Usui H; Shimaji H; Kurahashi K; Fujiwara M
    J Pharmacol Exp Ther; 1991 Feb; 256(2):683-8. PubMed ID: 1994001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide and effects of cationic polypeptides in canine cerebral arteries.
    Kinoshita H; Katusic ZS
    J Cereb Blood Flow Metab; 1997 Apr; 17(4):470-80. PubMed ID: 9143230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct effects of ketamine on isolated canine cerebral and mesenteric arteries.
    Fukuda S; Murakawa T; Takeshita H; Toda N
    Anesth Analg; 1983 Jun; 62(6):553-8. PubMed ID: 6846876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of endothelium in regulation of smooth muscle membrane potential and tone in the rabbit middle cerebral artery.
    Yamakawa N; Ohhashi M; Waga S; Itoh T
    Br J Pharmacol; 1997 Aug; 121(7):1315-22. PubMed ID: 9257909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries.
    Shirahase H; Usui H; Kurahashi K; Fujiwara M; Fukui K
    J Cardiovasc Pharmacol; 1987 Nov; 10(5):517-22. PubMed ID: 2447399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An endothelium-dependent contraction induced by A-23187, a Ca++ ionophore in canine basilar artery.
    Shirahase H; Usui H; Manabe K; Kurahashi K; Fujiwara M
    J Pharmacol Exp Ther; 1988 Nov; 247(2):701-5. PubMed ID: 2460617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in angiotensin converting enzyme activity in the renal vascular bed of streptozotocin-induced diabetic rat.
    Kamata K; Mizutani K
    Res Commun Mol Pathol Pharmacol; 1999; 104(2):181-92. PubMed ID: 10634311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Somatostatin-induced contraction mediated by endothelial TXA2 production in canine cerebral arteries.
    Shirahase H; Kanda M; Shimaji H; Usui H; Rorstad OP; Kurahashi K
    Life Sci; 1993; 53(20):1539-44. PubMed ID: 8105357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of thromboxane and angiotensin in cyclosporine-induced renal vasoconstriction in the dog.
    Carrier M; Tronc F; Pelletier LC; Latour JG
    J Heart Lung Transplant; 1993; 12(5):851-5. PubMed ID: 8241227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-nitrosocaptopril. II. Effects on vascular reactivity.
    Cooke JP; Andon N; Loscalzo J
    J Pharmacol Exp Ther; 1989 Jun; 249(3):730-4. PubMed ID: 2659777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral vascular effects of angiotensin II: new insights from genetic models.
    Faraci FM; Lamping KG; Modrick ML; Ryan MJ; Sigmund CD; Didion SP
    J Cereb Blood Flow Metab; 2006 Apr; 26(4):449-55. PubMed ID: 16094317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-independent and -dependent contractions induced by endothelin-1 in canine basilar arteries.
    Shirahase H; Usui H; Shimaji H; Kurahashi K; Fujiwara M
    Life Sci; 1991; 49(4):273-81. PubMed ID: 2072816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methanol-induced contraction of canine cerebral artery and its possible mechanism of action.
    Li W; Altura BT; Altura BM
    Toxicol Appl Pharmacol; 1998 Jun; 150(2):361-8. PubMed ID: 9653067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelium-dependent contraction and -independent relaxation induced by adenine nucleotides and nucleoside in the canine basilar artery.
    Shirahase H; Usui H; Manabe K; Kurahashi K; Fujiwara M
    J Pharmacol Exp Ther; 1988 Dec; 247(3):1152-7. PubMed ID: 3204513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelium-dependent vasocontraction in response to noradrenaline in the canine cerebral artery.
    Usui H; Kurahashi K; Shirahase H; Fukui K; Fujiwara M
    Jpn J Pharmacol; 1987 Jun; 44(2):228-31. PubMed ID: 3656781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Responses of the bovine mammary artery to angiotensins.
    Gorewit RC; Jiang J; Aneshansley DJ
    J Dairy Sci; 1993 May; 76(5):1278-84. PubMed ID: 8505419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.