BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 27955944)

  • 1. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo.
    Sun Z; Ettensohn CA
    Dev Biol; 2017 Jan; 421(2):149-160. PubMed ID: 27955944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos.
    Piacentino ML; Ramachandran J; Bradham CA
    Development; 2015 Mar; 142(5):943-52. PubMed ID: 25633352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton.
    Duloquin L; Lhomond G; Gache C
    Development; 2007 Jun; 134(12):2293-302. PubMed ID: 17507391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of univin, a TGF-beta growth factor, requires ectoderm-ECM interaction and promotes skeletal growth in the sea urchin embryo.
    Zito F; Costa C; Sciarrino S; Poma V; Russo R; Angerer LM; Matranga V
    Dev Biol; 2003 Dec; 264(1):217-27. PubMed ID: 14623243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional evidences for a type 1 TGF-beta sensu stricto receptor in the lophotrochozoan Crassostrea gigas suggest conserved molecular mechanisms controlling mesodermal patterning across bilateria.
    Herpin A; Lelong C; Becker T; Rosa FM; Favrel P; Cunningham C
    Mech Dev; 2005 May; 122(5):695-705. PubMed ID: 15817226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RTK and TGF-beta signaling pathways genes in the sea urchin genome.
    Lapraz F; Röttinger E; Duboc V; Range R; Duloquin L; Walton K; Wu SY; Bradham C; Loza MA; Hibino T; Wilson K; Poustka A; McClay D; Angerer L; Gache C; Lepage T
    Dev Biol; 2006 Dec; 300(1):132-52. PubMed ID: 17084834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo.
    Ettensohn CA; Illies MR; Oliveri P; De Jong DL
    Development; 2003 Jul; 130(13):2917-28. PubMed ID: 12756175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation.
    Adomako-Ankomah A; Ettensohn CA
    Development; 2013 Oct; 140(20):4214-25. PubMed ID: 24026121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional evidence for a singular repertoire of BMP receptor signal transducing proteins in the lophotrochozoan Crassostrea gigas suggests a shared ancestral BMP/activin pathway.
    Herpin A; Lelong C; Becker T; Rosa F; Favrel P; Cunningham C
    FEBS J; 2005 Jul; 272(13):3424-40. PubMed ID: 15978047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the pattern of adherens junction-associated beta-catenin accompany morphogenesis in the sea urchin embryo.
    Miller JR; McClay DR
    Dev Biol; 1997 Dec; 192(2):310-22. PubMed ID: 9441670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P58-A and P58-B: novel proteins that mediate skeletogenesis in the sea urchin embryo.
    Adomako-Ankomah A; Ettensohn CA
    Dev Biol; 2011 May; 353(1):81-93. PubMed ID: 21362416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo.
    Ramachandran RK; Govindarajan V; Seid CA; Patil S; Tomlinson CR
    Dev Dyn; 1995 Sep; 204(1):77-88. PubMed ID: 8563028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Par6 regulates skeletogenesis and gut differentiation in sea urchin larvae.
    Shiomi K; Yamazaki A; Kagawa M; Kiyomoto M; Yamaguchi M
    Dev Genes Evol; 2012 Sep; 222(5):269-78. PubMed ID: 22903233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo.
    Piacentino ML; Chung O; Ramachandran J; Zuch DT; Yu J; Conaway EA; Reyna AE; Bradham CA
    Dev Biol; 2016 Apr; 412(1):44-56. PubMed ID: 26905309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of a new cell type was associated with competition for a signaling ligand.
    Ettensohn CA; Adomako-Ankomah A
    PLoS Biol; 2019 Sep; 17(9):e3000460. PubMed ID: 31532765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.