BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 27955944)

  • 21. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo.
    Ettensohn CA; Dey D
    Dev Biol; 2017 Jan; 421(2):258-270. PubMed ID: 27866905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transforming growth factor-β signal regulates gut bending in the sea urchin embryo.
    Suzuki H; Yaguchi S
    Dev Growth Differ; 2018 May; 60(4):216-225. PubMed ID: 29878318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. microRNA-31 modulates skeletal patterning in the sea urchin embryo.
    Stepicheva NA; Song JL
    Development; 2015 Nov; 142(21):3769-80. PubMed ID: 26400092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The univin gene encodes a member of the transforming growth factor-beta superfamily with restricted expression in the sea urchin embryo.
    Stenzel P; Angerer LM; Smith BJ; Angerer RC; Vale WW
    Dev Biol; 1994 Nov; 166(1):149-58. PubMed ID: 7958442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis.
    Wilt FH
    Bioessays; 1997 Aug; 19(8):665-8. PubMed ID: 9264247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Culture of and experiments with sea urchin embryo primary mesenchyme cells.
    Moreno B; DiCorato A; Park A; Mobilia K; Knapp R; Bleher R; Wilke C; Alvares K; Joester D
    Methods Cell Biol; 2019; 150():293-330. PubMed ID: 30777181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
    Flowers VL; Courteau GR; Poustka AJ; Weng W; Venuti JM
    Dev Dyn; 2004 Dec; 231(4):727-40. PubMed ID: 15517584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos.
    Bradham CA; Miranda EL; McClay DR
    Dev Dyn; 2004 Apr; 229(4):713-21. PubMed ID: 15042695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the role of cadherin in regulating cell adhesion during sea urchin development.
    Miller JR; McClay DR
    Dev Biol; 1997 Dec; 192(2):323-39. PubMed ID: 9441671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manganese interferes with calcium, perturbs ERK signaling, and produces embryos with no skeleton.
    Pinsino A; Roccheri MC; Costa C; Matranga V
    Toxicol Sci; 2011 Sep; 123(1):217-30. PubMed ID: 21659617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos.
    Schatzberg D; Lawton M; Hadyniak SE; Ross EJ; Carney T; Beane WS; Levin M; Bradham CA
    Dev Biol; 2015 Oct; 406(2):259-70. PubMed ID: 26282894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The biological regulation of sea urchin larval skeletogenesis - From genes to biomineralized tissue.
    Gildor T; Winter MR; Layous M; Hijaze E; Ben-Tabou de-Leon S
    J Struct Biol; 2021 Dec; 213(4):107797. PubMed ID: 34530133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor.
    Kuratomi G; Komuro A; Goto K; Shinozaki M; Miyazawa K; Miyazono K; Imamura T
    Biochem J; 2005 Mar; 386(Pt 3):461-70. PubMed ID: 15496141
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos.
    Tan H; Ransick A; Wu H; Dobias S; Liu YH; Maxson R
    Dev Biol; 1998 Sep; 201(2):230-46. PubMed ID: 9740661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo.
    Adomako-Ankomah A; Ettensohn CA
    Genesis; 2014 Mar; 52(3):158-72. PubMed ID: 24515750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells.
    Ettensohn CA; Ruffins SW
    Development; 1993 Apr; 117(4):1275-85. PubMed ID: 8404530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zebrafish Dpr2 inhibits mesoderm induction by promoting degradation of nodal receptors.
    Zhang L; Zhou H; Su Y; Sun Z; Zhang H; Zhang L; Zhang Y; Ning Y; Chen YG; Meng A
    Science; 2004 Oct; 306(5693):114-7. PubMed ID: 15459392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.