These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

661 related articles for article (PubMed ID: 27956209)

  • 1. Methods for cleaning the BOLD fMRI signal.
    Caballero-Gaudes C; Reynolds RC
    Neuroimage; 2017 Jul; 154():128-149. PubMed ID: 27956209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals.
    Kundu P; Voon V; Balchandani P; Lombardo MV; Poser BA; Bandettini PA
    Neuroimage; 2017 Jul; 154():59-80. PubMed ID: 28363836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological noise correction using ECG-derived respiratory signals for enhanced mapping of spontaneous neuronal activity with simultaneous EEG-fMRI.
    Abreu R; Nunes S; Leal A; Figueiredo P
    Neuroimage; 2017 Jul; 154():115-127. PubMed ID: 27530551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS).
    Frederick Bd; Nickerson LD; Tong Y
    Neuroimage; 2012 Apr; 60(3):1913-23. PubMed ID: 22342801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data.
    Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM
    Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the efficacy of data-driven denoising methods for a multi-echo fMRI acquisition at 7T.
    Beckers AB; Drenthen GS; Jansen JFA; Backes WH; Poser BA; Keszthelyi D
    Neuroimage; 2023 Oct; 280():120361. PubMed ID: 37669723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential pitfalls when denoising resting state fMRI data using nuisance regression.
    Bright MG; Tench CR; Murphy K
    Neuroimage; 2017 Jul; 154():159-168. PubMed ID: 28025128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kernel machine-based fMRI physiological noise removal method.
    Song X; Chen NK; Gaur P
    Magn Reson Imaging; 2014 Feb; 32(2):150-62. PubMed ID: 24321306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI.
    Steel A; Garcia BD; Silson EH; Robertson CE
    Neuroimage; 2022 Dec; 264():119723. PubMed ID: 36328274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separating slow BOLD from non-BOLD baseline drifts using multi-echo fMRI.
    Evans JW; Kundu P; Horovitz SG; Bandettini PA
    Neuroimage; 2015 Jan; 105():189-97. PubMed ID: 25449746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
    Shirer WR; Jiang H; Price CM; Ng B; Greicius MD
    Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI.
    Kundu P; Inati SJ; Evans JW; Luh WM; Bandettini PA
    Neuroimage; 2012 Apr; 60(3):1759-70. PubMed ID: 22209809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved resting state functional connectivity sensitivity and reproducibility using a multiband multi-echo acquisition.
    Cohen AD; Yang B; Fernandez B; Banerjee S; Wang Y
    Neuroimage; 2021 Jan; 225():117461. PubMed ID: 33069864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denoising spinal cord fMRI data: Approaches to acquisition and analysis.
    Eippert F; Kong Y; Jenkinson M; Tracey I; Brooks JCW
    Neuroimage; 2017 Jul; 154():255-266. PubMed ID: 27693613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic independent component labeling for artifact removal in fMRI.
    Tohka J; Foerde K; Aron AR; Tom SM; Toga AW; Poldrack RA
    Neuroimage; 2008 Feb; 39(3):1227-45. PubMed ID: 18042495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated strategy for improving functional connectivity mapping using multiecho fMRI.
    Kundu P; Brenowitz ND; Voon V; Worbe Y; VĂ©rtes PE; Inati SJ; Saad ZS; Bandettini PA; Bullmore ET
    Proc Natl Acad Sci U S A; 2013 Oct; 110(40):16187-92. PubMed ID: 24038744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data.
    Liu C; JaJa J; Pessoa L
    Neuroimage; 2018 Apr; 169():363-373. PubMed ID: 29246846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
    Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM
    Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age.
    Churchill NW; Raamana P; Spring R; Strother SC
    Neuroimage; 2017 Jul; 154():240-254. PubMed ID: 28216431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The optimized combination of aCompCor and ICA-AROMA to reduce motion and physiologic noise in task fMRI data.
    Van Schuerbeek P; De Wandel L; Baeken C
    Biomed Phys Eng Express; 2022 Jul; 8(5):. PubMed ID: 35378526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.