BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27956831)

  • 1. A facile route to form self-carried redox-responsive vorinostat nanodrug for effective solid tumor therapy.
    Han L; Wang T; Wu J; Yin X; Fang H; Zhang N
    Int J Nanomedicine; 2016; 11():6003-6022. PubMed ID: 27956831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitizing Triple Negative Breast Cancer to Tamoxifen Chemotherapy via a Redox-Responsive Vorinostat-containing Polymeric Prodrug Nanocarrier.
    Ma W; Sun J; Xu J; Luo Z; Diao D; Zhang Z; Oberly PJ; Minnigh MB; Xie W; Poloyac SM; Huang Y; Li S
    Theranostics; 2020; 10(6):2463-2478. PubMed ID: 32194813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antitumor activity of SAHA, a novel histone deacetylase inhibitor, against murine B cell lymphoma A20 cells in vitro and in vivo.
    Yang B; Yu D; Liu J; Yang K; Wu G; Liu H
    Tumour Biol; 2015 Jul; 36(7):5051-61. PubMed ID: 25649979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pendant HDAC inhibitor SAHA derivatised polymer as a novel prodrug micellar carrier for anticancer drugs.
    Xu J; Sun J; Wang P; Ma X; Li S
    J Drug Target; 2018; 26(5-6):448-457. PubMed ID: 29251528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methotrexate-based amphiphilic prodrug nanoaggregates for co-administration of multiple therapeutics and synergistic cancer therapy.
    Hou M; Gao YE; Shi X; Bai S; Ma X; Li B; Xiao B; Xue P; Kang Y; Xu Z
    Acta Biomater; 2018 Sep; 77():228-239. PubMed ID: 30006314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic suppressive effect of PARP-1 inhibitor PJ34 and HDAC inhibitor SAHA on proliferation of liver cancer cells.
    Liang BY; Xiong M; Ji GB; Zhang EL; Zhang ZY; Dong KS; Chen XP; Huang ZY
    J Huazhong Univ Sci Technolog Med Sci; 2015 Aug; 35(4):535-540. PubMed ID: 26223923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular cisplatin-vorinostat nanodrug for overcoming drug resistance in cancer synergistic therapy.
    Xu S; Zhu X; Huang W; Zhou Y; Yan D
    J Control Release; 2017 Nov; 266():36-46. PubMed ID: 28893609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug.
    Marks PA; Breslow R
    Nat Biotechnol; 2007 Jan; 25(1):84-90. PubMed ID: 17211407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structural requirements of histone deacetylase inhibitors: SAHA analogs modified at the C5 position display dual HDAC6/8 selectivity.
    Negmeldin AT; Pflum MKH
    Bioorg Med Chem Lett; 2017 Aug; 27(15):3254-3258. PubMed ID: 28648461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione-Responsive Prodrug Nanoparticles for Effective Drug Delivery and Cancer Therapy.
    Ling X; Tu J; Wang J; Shajii A; Kong N; Feng C; Zhang Y; Yu M; Xie T; Bharwani Z; Aljaeid BM; Shi B; Tao W; Farokhzad OC
    ACS Nano; 2019 Jan; 13(1):357-370. PubMed ID: 30485068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo.
    Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q
    Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The histone deacetylase inhibitors suberoylanilide hydroxamic (Vorinostat) and valproic acid induce irreversible and MDR1-independent resistance in human colon cancer cells.
    Fedier A; Dedes KJ; Imesch P; Von Bueren AO; Fink D
    Int J Oncol; 2007 Sep; 31(3):633-41. PubMed ID: 17671692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells.
    Kwak TW; Kim DH; Jeong YI; Kang DH
    J Nanobiotechnology; 2015 Sep; 13():60. PubMed ID: 26410576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the role of histone deacetylases in the inhibition of mammary carcinogenesis by dietary energy restriction (DER): effects of suberoylanilide hydroxamic acid (SAHA) and DER in a rat model.
    Zhu Z; Jiang W; McGinley JN; Thompson HJ
    Cancer Prev Res (Phila); 2013 Apr; 6(4):290-8. PubMed ID: 23365133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Endogenous Reactive Oxygen Species (ROS)-Activated Histone Deacetylase Inhibitor Prodrug for Cancer Chemotherapy.
    Bhagat SD; Singh U; Mishra RK; Srivastava A
    ChemMedChem; 2018 Oct; 13(19):2073-2079. PubMed ID: 30070768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oncogenic K-ras confers SAHA resistance by up-regulating HDAC6 and c-myc expression.
    Wang Q; Tan R; Zhu X; Zhang Y; Tan Z; Su B; Li Y
    Oncotarget; 2016 Mar; 7(9):10064-72. PubMed ID: 26848526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-α-tocopherol polyethylene glycol succinate-based redox-sensitive paclitaxel prodrug for overcoming multidrug resistance in cancer cells.
    Bao Y; Guo Y; Zhuang X; Li D; Cheng B; Tan S; Zhang Z
    Mol Pharm; 2014 Sep; 11(9):3196-209. PubMed ID: 25102234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced anticancer efficacy of histone deacetyl inhibitor, suberoylanilide hydroxamic acid, in combination with a phosphodiesterase inhibitor, pentoxifylline, in human cancer cell lines and in-vivo tumor xenografts.
    Nidhyanandan S; Thippeswamy BS; Chandrasekhar KB; Reddy ND; Kulkarni NM; Karthikeyan K; Khan FR; Raghul J; Vijaykanth G; Narayanan S
    Anticancer Drugs; 2017 Oct; 28(9):1002-1017. PubMed ID: 28727579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-sensitive iodinated polymersomes carrying histone deacetylase inhibitor as a dual-functional nano-radiosensitizer for enhanced radiotherapy of breast cancer.
    Zhu Z; Wu M; Sun J; Huangfu Z; Yin L; Yong W; Sun J; Wang G; Meng F; Zhong Z
    Drug Deliv; 2021 Dec; 28(1):2301-2309. PubMed ID: 34730060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of poly(disulfide)s through one-step oxidation polymerization for redox-responsive drug delivery.
    Zhang R; Nie T; Wang L; He D; Kang Y; Zhang C; Wu J
    Biomater Sci; 2023 Jun; 11(12):4254-4264. PubMed ID: 37144301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.