These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 27956873)
1. Gravity-capillary waves in finite depth on flows of constant vorticity. Hsu HC; Francius M; Montalvo P; Kharif C Proc Math Phys Eng Sci; 2016 Nov; 472(2195):20160363. PubMed ID: 27956873 [TBL] [Abstract][Full Text] [Related]
2. Strongly nonlinear long gravity waves in uniform shear flows. Choi W Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026305. PubMed ID: 14525103 [TBL] [Abstract][Full Text] [Related]
3. Linear-shear-current modified Schrödinger equation for gravity waves in finite water depth. Liao B; Dong G; Ma Y; Gao JL Phys Rev E; 2017 Oct; 96(4-1):043111. PubMed ID: 29347471 [TBL] [Abstract][Full Text] [Related]
4. Regularity for steady periodic capillary water waves with vorticity. Henry D Philos Trans A Math Phys Eng Sci; 2012 Apr; 370(1964):1616-28. PubMed ID: 22393112 [TBL] [Abstract][Full Text] [Related]
5. Bifurcation analysis for axisymmetric capillary water waves with vorticity and swirl. Erhardt AH; Wahlén E; Weber J Stud Appl Math; 2022 Nov; 149(4):904-942. PubMed ID: 36605702 [TBL] [Abstract][Full Text] [Related]
6. On the stability of lumps and wave collapse in water waves. Akylas TR; Cho Y Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1876):2761-74. PubMed ID: 18487123 [TBL] [Abstract][Full Text] [Related]
7. Stability of gravity-capillary solitary waves on shallow water based on the fifth-order Kadomtsev-Petviashvili equation. Cho Y Phys Rev E; 2018 Jul; 98(1-1):012213. PubMed ID: 30110743 [TBL] [Abstract][Full Text] [Related]
8. On periodic geophysical water flows with discontinuous vorticity in the equatorial Martin CI Philos Trans A Math Phys Eng Sci; 2018 Jan; 376(2111):. PubMed ID: 29229796 [TBL] [Abstract][Full Text] [Related]
9. On asymmetric generalized solitary gravity-capillary waves in finite depth. Gao T; Wang Z; Vanden-Broeck JM Proc Math Phys Eng Sci; 2016 Oct; 472(2194):20160454. PubMed ID: 27843404 [TBL] [Abstract][Full Text] [Related]
10. New conformal mapping for adaptive resolving of the complex singularities of Stokes wave. Lushnikov PM; Dyachenko SA; A Silantyev D Proc Math Phys Eng Sci; 2017 Jun; 473(2202):20170198. PubMed ID: 28690418 [TBL] [Abstract][Full Text] [Related]
11. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves. Colagrossi A; Souto-Iglesias A; Antuono M; Marrone S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023302. PubMed ID: 23496634 [TBL] [Abstract][Full Text] [Related]
12. Transversally periodic solitary gravity-capillary waves. Milewski PA; Wang Z Proc Math Phys Eng Sci; 2014 Jan; 470(2161):20130537. PubMed ID: 24399922 [TBL] [Abstract][Full Text] [Related]
13. Emergence of acoustic waves from vorticity fluctuations: impact of non-normality. George J; Sujith RI Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046321. PubMed ID: 19905450 [TBL] [Abstract][Full Text] [Related]
14. Steady dark solitary waves emerging from wave-generated meanflow: the role of modulation equations. Bridges TJ Chaos; 2005 Sep; 15(3):37113. PubMed ID: 16253008 [TBL] [Abstract][Full Text] [Related]
15. Geophysical water flows with constant vorticity and centripetal terms. Martin CI Ann Mat Pura Appl; 2021; 200(1):101-116. PubMed ID: 33568884 [TBL] [Abstract][Full Text] [Related]
16. Numerical study of interfacial solitary waves propagating under an elastic sheet. Wang Z; Părău EI; Milewski PA; Vanden-Broeck JM Proc Math Phys Eng Sci; 2014 Aug; 470(2168):20140111. PubMed ID: 25104909 [TBL] [Abstract][Full Text] [Related]
17. Analytical approximation and numerical simulations for periodic travelling water waves. Kalimeris K Philos Trans A Math Phys Eng Sci; 2018 Jan; 376(2111):. PubMed ID: 29229793 [TBL] [Abstract][Full Text] [Related]
18. Effects of thin film and Stokes drift on the generation of vorticity by surface waves. Parfenyev VM; Vergeles SS; Lebedev VV Phys Rev E; 2016 Nov; 94(5-1):052801. PubMed ID: 27967185 [TBL] [Abstract][Full Text] [Related]
19. Normal form of synchronization and resonance between vorticity waves in shear flow instability. Heifetz E; Guha A Phys Rev E; 2019 Oct; 100(4-1):043105. PubMed ID: 31770928 [TBL] [Abstract][Full Text] [Related]
20. Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows. Ohkitani K Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046304. PubMed ID: 12006010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]