These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
441 related articles for article (PubMed ID: 27957688)
21. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388 [TBL] [Abstract][Full Text] [Related]
22. [Sorption of Ma FF; Zhao BW Huan Jing Ke Xue; 2017 Feb; 38(2):837-844. PubMed ID: 29964545 [TBL] [Abstract][Full Text] [Related]
23. Contrasting effects of rice husk pyrolysis temperature on silicon dissolution and retention of cadmium (Cd) and dimethylarsinic acid (DMA). Linam F; McCoach K; Limmer MA; Seyfferth AL Sci Total Environ; 2021 Apr; 765():144428. PubMed ID: 33412375 [TBL] [Abstract][Full Text] [Related]
24. Peat moss-derived biochars as effective sorbents for VOCs' removal in groundwater. Kim J; Lee SS; Khim J Environ Geochem Health; 2019 Aug; 41(4):1637-1646. PubMed ID: 28780675 [TBL] [Abstract][Full Text] [Related]
25. Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Li H; Mahyoub SAA; Liao W; Xia S; Zhao H; Guo M; Ma P Bioresour Technol; 2017 Jan; 223():20-26. PubMed ID: 27771526 [TBL] [Abstract][Full Text] [Related]
26. Investigating the adsorption behavior and quantitative contribution of Pb Liu L; Huang Y; Meng Y; Cao J; Hu H; Su Y; Dong L; Tao S; Ruan R Environ Res; 2020 Aug; 187():109609. PubMed ID: 32450423 [TBL] [Abstract][Full Text] [Related]
27. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature. Rodríguez-Vila A; Selwyn-Smith H; Enunwa L; Smail I; Covelo EF; Sizmur T Environ Sci Pollut Res Int; 2018 Mar; 25(8):7730-7739. PubMed ID: 29288302 [TBL] [Abstract][Full Text] [Related]
28. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Ding W; Dong X; Ime IM; Gao B; Ma LQ Chemosphere; 2014 Jun; 105():68-74. PubMed ID: 24393563 [TBL] [Abstract][Full Text] [Related]
29. Kinetics and the mass transfer mechanism of hydrogen sulfide removal by biochar derived from rice hull. Shang G; Liu L; Chen P; Shen G; Li Q J Air Waste Manag Assoc; 2016 May; 66(5):439-45. PubMed ID: 27064906 [TBL] [Abstract][Full Text] [Related]
30. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes. Hall KE; Spokas KA; Gamiz B; Cox L; Papiernik SK; Koskinen WC Pest Manag Sci; 2018 May; 74(5):1206-1212. PubMed ID: 28111921 [TBL] [Abstract][Full Text] [Related]
32. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Wu W; Li J; Niazi NK; Müller K; Chu Y; Zhang L; Yuan G; Lu K; Song Z; Wang H Environ Sci Pollut Res Int; 2016 Nov; 23(22):22890-22896. PubMed ID: 27572693 [TBL] [Abstract][Full Text] [Related]
33. [Structural changes of aged biochar and the influence on phenanthrene adsorption]. Tang W; Guo Y; Wu JG; Huang ZQ; Dai JY Huan Jing Ke Xue; 2014 Jul; 35(7):2604-11. PubMed ID: 25244844 [TBL] [Abstract][Full Text] [Related]
34. Phosphate and ammonium adsorption of sesame straw biochars produced at different pyrolysis temperatures. Yin Q; Zhang B; Wang R; Zhao Z Environ Sci Pollut Res Int; 2018 Feb; 25(5):4320-4329. PubMed ID: 29181752 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Pariyar P; Kumari K; Jain MK; Jadhao PS Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240 [TBL] [Abstract][Full Text] [Related]
36. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity. Xu D; Cao J; Li Y; Howard A; Yu K Waste Manag; 2019 Mar; 87():652-660. PubMed ID: 31109567 [TBL] [Abstract][Full Text] [Related]
37. Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. Essandoh M; Wolgemuth D; Pittman CU; Mohan D; Mlsna T Environ Sci Pollut Res Int; 2017 Feb; 24(5):4577-4590. PubMed ID: 27957693 [TBL] [Abstract][Full Text] [Related]
38. Biochar properties and lead(II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Kwak JH; Islam MS; Wang S; Messele SA; Naeth MA; El-Din MG; Chang SX Chemosphere; 2019 Sep; 231():393-404. PubMed ID: 31146131 [TBL] [Abstract][Full Text] [Related]
39. Metolachlor Sorption and Degradation in Soil Amended with Fresh and Aged Biochars. Trigo C; Spokas KA; Hall KE; Cox L; Koskinen WC J Agric Food Chem; 2016 Apr; 64(16):3141-9. PubMed ID: 27050383 [TBL] [Abstract][Full Text] [Related]
40. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Rajapaksha AU; Vithanage M; Zhang M; Ahmad M; Mohan D; Chang SX; Ok YS Bioresour Technol; 2014 Aug; 166():303-8. PubMed ID: 24926603 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]