BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27957718)

  • 1. Dynamic Viscoelasticity and Surface Properties of Porcine Left Anterior Descending Coronary Arteries.
    Burton HE; Freij JM; Espino DM
    Cardiovasc Eng Technol; 2017 Mar; 8(1):41-56. PubMed ID: 27957718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of freezing, fixation and dehydration on surface roughness properties of porcine left anterior descending coronary arteries.
    Burton HE; Williams RL; Espino DM
    Micron; 2017 Oct; 101():78-86. PubMed ID: 28662414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of injurious compression on the elastic, hyper-elastic and visco-elastic properties of porcine peripheral nerves.
    Fraser S; Barberio CG; Chaudhry T; Power DM; Tan S; Lawless BM; Espino DM
    J Mech Behav Biomed Mater; 2021 Sep; 121():104624. PubMed ID: 34139483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale three-dimensional surface reconstruction and surface roughness of porcine left anterior descending coronary arteries.
    Burton HE; Cullinan R; Jiang K; Espino DM
    R Soc Open Sci; 2019 Sep; 6(9):190915. PubMed ID: 31598314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Mechanical Overloading on Surface Roughness of the Coronary Arteries.
    Burton HE; Espino DM
    Appl Bionics Biomech; 2019; 2019():2784172. PubMed ID: 30809272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic properties of mitral valve leaflets: An analysis of regional variation and frequency-dependency.
    Baxter J; Buchan KG; Espino DM
    Proc Inst Mech Eng H; 2017 Oct; 231(10):938-944. PubMed ID: 28707559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic properties of human periodontal ligament:
    Wu B; Zhao S; Shi H; Lu R; Yan B; Ma S; Markert B
    Angle Orthod; 2019 May; 89(3):480-487. PubMed ID: 30605020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic properties of human and bovine articular cartilage: a comparison of frequency-dependent trends.
    Temple DK; Cederlund AA; Lawless BM; Aspden RM; Espino DM
    BMC Musculoskelet Disord; 2016 Oct; 17(1):419. PubMed ID: 27716169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency dependent viscoelastic properties of porcine brain tissue.
    Li W; Shepherd DET; Espino DM
    J Mech Behav Biomed Mater; 2020 Feb; 102():103460. PubMed ID: 31590055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency dependent viscoelastic properties of porcine bladder.
    Barnes SC; Shepherd DE; Espino DM; Bryan RT
    J Mech Behav Biomed Mater; 2015 Feb; 42():168-76. PubMed ID: 25486629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of liver fibrosis in rats with shearwave dispersion ultrasound vibrometry: comparison with dynamic mechanical analysis.
    Zhu Y; Zhang X; Zheng Y; Chen X; Shen Y; Lin H; Guo Y; Wang T; Chen S
    Med Eng Phys; 2014 Nov; 36(11):1401-7. PubMed ID: 24835187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequencies.
    Fulcher GR; Hukins DW; Shepherd DE
    BMC Musculoskelet Disord; 2009 Jun; 10():61. PubMed ID: 19497105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency and diameter dependent viscoelastic properties of mitral valve chordae tendineae.
    Wilcox AG; Buchan KG; Espino DM
    J Mech Behav Biomed Mater; 2014 Feb; 30():186-95. PubMed ID: 24316874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of temperature dependent mechanical behavior of cartilage.
    Chae Y; Aguilar G; Lavernia EJ; Wong BJ
    Lasers Surg Med; 2003; 32(4):271-8. PubMed ID: 12696094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic viscoelastic properties of porcine gastric tissue: Effects of loading frequency, region and direction.
    Sif Julie F; Torben Strøm H; Mette P; Hans G; Jens Vinge N
    J Biomech; 2022 Oct; 143():111302. PubMed ID: 36126503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of porcine coronary arteries ex vivo employing impedance planimetry: a new intravascular technique.
    Frøbert O; Gregersen H; Bagger JP
    Ann Biomed Eng; 1996; 24(1):148-55. PubMed ID: 8669712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic characterization of human descending thoracic aortas under cyclic load.
    Franchini G; Breslavsky ID; Holzapfel GA; Amabili M
    Acta Biomater; 2021 Aug; 130():291-307. PubMed ID: 34082105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear modulus of porcine coronary artery: contributions of media and adventitia.
    Lu X; Yang J; Zhao JB; Gregersen H; Kassab GS
    Am J Physiol Heart Circ Physiol; 2003 Nov; 285(5):H1966-75. PubMed ID: 14561679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain.
    Estermann SJ; Pahr DH; Reisinger A
    J Mech Behav Biomed Mater; 2020 Dec; 112():104038. PubMed ID: 32889334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery.
    Pineda-Castillo SA; Aparicio-Ruiz S; Burns MM; Laurence DW; Bradshaw E; Gu T; Holzapfel GA; Lee CH
    Acta Biomater; 2022 Sep; 150():295-309. PubMed ID: 35905825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.