BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 27957878)

  • 1. Polyamine-trypanothione pathway: an update.
    Ilari A; Fiorillo A; Genovese I; Colotti G
    Future Med Chem; 2017 Jan; 9(1):61-77. PubMed ID: 27957878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamine metabolism in Leishmania: from arginine to trypanothione.
    Colotti G; Ilari A
    Amino Acids; 2011 Feb; 40(2):269-85. PubMed ID: 20512387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis.
    Heby O; Persson L; Rentala M
    Amino Acids; 2007 Aug; 33(2):359-66. PubMed ID: 17610127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting polyamine metabolism for finding new drugs against leishmaniasis: a review.
    Ilari A; Fiorillo A; Baiocco P; Poser E; Angiulli G; Colotti G
    Mini Rev Med Chem; 2015; 15(3):243-52. PubMed ID: 25769972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs.
    Colotti G; Baiocco P; Fiorillo A; Boffi A; Poser E; Chiaro FD; Ilari A
    Future Med Chem; 2013 Oct; 5(15):1861-75. PubMed ID: 24144416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism.
    Colotti G; Saccoliti F; Gramiccia M; Di Muccio T; Prakash J; Yadav S; Dubey VK; Vistoli G; Battista T; Mocci S; Fiorillo A; Bibi A; Madia VN; Messore A; Costi R; Di Santo R; Ilari A
    Amino Acids; 2020 Feb; 52(2):247-259. PubMed ID: 31037461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting trypanothione metabolism in trypanosomatid human parasites.
    Olin-Sandoval V; Moreno-Sánchez R; Saavedra E
    Curr Drug Targets; 2010 Dec; 11(12):1614-30. PubMed ID: 20735352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advancement in the Search of Innovative Antiprotozoal Agents Targeting Trypanothione Metabolism.
    Saccoliti F; Di Santo R; Costi R
    ChemMedChem; 2020 Dec; 15(24):2420-2435. PubMed ID: 32805075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic analysis of trypanothione synthetase knockdown in the African trypanosome.
    Ariyanayagam MR; Oza SL; Guther ML; Fairlamb AH
    Biochem J; 2005 Oct; 391(Pt 2):425-32. PubMed ID: 16008527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promising Molecular Targets Related to Polyamine Biosynthesis in Drug Discovery against Leishmaniasis.
    Santiago-Silva KM; Camargo PG; Bispo MLF
    Med Chem; 2022; 19(1):2-9. PubMed ID: 35838221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development.
    Schmidt A; Krauth-Siegel RL
    Curr Top Med Chem; 2002 Nov; 2(11):1239-59. PubMed ID: 12171583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and chemical analyses reveal that trypanothione synthetase but not glutathionylspermidine synthetase is essential for Leishmania infantum.
    Sousa AF; Gomes-Alves AG; Benítez D; Comini MA; Flohé L; Jaeger T; Passos J; Stuhlmann F; Tomás AM; Castro H
    Free Radic Biol Med; 2014 Aug; 73():229-38. PubMed ID: 24853758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single enzyme catalyses formation of Trypanothione from glutathione and spermidine in Trypanosoma cruzi.
    Oza SL; Tetaud E; Ariyanayagam MR; Warnon SS; Fairlamb AH
    J Biol Chem; 2002 Sep; 277(39):35853-61. PubMed ID: 12121990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting Trypanothione Metabolism in Trypanosomatids.
    González-Montero MC; Andrés-Rodríguez J; García-Fernández N; Pérez-Pertejo Y; Reguera RM; Balaña-Fouce R; García-Estrada C
    Molecules; 2024 May; 29(10):. PubMed ID: 38792079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system.
    Rosa LB; Aires RL; Oliveira LS; Fontes JV; Miguel DC; Abbehausen C
    ChemMedChem; 2021 Jun; 16(11):1681-1695. PubMed ID: 33615725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism and functions of trypanothione in the Kinetoplastida.
    Fairlamb AH; Cerami A
    Annu Rev Microbiol; 1992; 46():695-729. PubMed ID: 1444271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism.
    Krauth-Siegel RL; Comini MA
    Biochim Biophys Acta; 2008 Nov; 1780(11):1236-48. PubMed ID: 18395526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Therapeutics, Their Problems and Thiol Metabolism as Potential Drug Targets in Leishmaniasis.
    Singh K; Garg G; Ali V
    Curr Drug Metab; 2016; 17(9):897-919. PubMed ID: 27549807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biosynthesis of trypanothione and N1-glutathionylspermidine in Crithidia fasciculata.
    Fairlamb AH; Henderson GB; Cerami A
    Mol Biochem Parasitol; 1986 Dec; 21(3):247-57. PubMed ID: 3807945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.