These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27958368)

  • 21. Hollow Cobalt Selenide Microspheres: Synthesis and Application as Anode Materials for Na-Ion Batteries.
    Ko YN; Choi SH; Kang YC
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6449-56. PubMed ID: 26918934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Li-ion storage performance of novel tube-in-tube structured nanofibers with hollow metal oxide nanospheres covered with a graphitic carbon layer.
    Park GD; Kang YC
    Nanoscale; 2020 Apr; 12(15):8404-8414. PubMed ID: 32239057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust hollow Bowl-like α-Fe
    Kang Q; Qin Y; Shi J; Xiong B; Tang W; Gao F; Lu Q
    J Colloid Interface Sci; 2022 Sep; 622():780-788. PubMed ID: 35537227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.
    Park GD; Kang YC
    Chemistry; 2016 Mar; 22(12):4140-6. PubMed ID: 26864320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical properties of tin oxide flake/reduced graphene oxide/carbon composite powders as anode materials for lithium-ion batteries.
    Lee SM; Choi SH; Kang YC
    Chemistry; 2014 Nov; 20(46):15203-7. PubMed ID: 25266199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conversion Reaction Mechanism of Ultrafine Bimetallic Co-Fe Selenides Embedded in Hollow Mesoporous Carbon Nanospheres and Their Excellent K-Ion Storage Performance.
    Yang SH; Park SK; Park GD; Lee JH; Kang YC
    Small; 2020 Aug; 16(33):e2002345. PubMed ID: 32686320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rambutan-like FeCO3 hollow microspheres: facile preparation and superior lithium storage performances.
    Zhong Y; Su L; Yang M; Wei J; Zhou Z
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11212-7. PubMed ID: 24066809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SnO
    Zan F; Jabeen N; Xiong W; Hussain A; Wang Y; Xia H
    Nanotechnology; 2020 May; 31(18):185402. PubMed ID: 31952062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-pot rapid synthesis of core-shell structured NiO@TiO2 nanopowders and their excellent electrochemical properties as anode materials for lithium ion batteries.
    Choi SH; Lee JH; Kang YC
    Nanoscale; 2013 Dec; 5(24):12645-50. PubMed ID: 24177597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Dimensional Nanofibrous Air Electrode Assembled With Carbon Nanotubes-Bridged Hollow Fe
    Jung JW; Jang JS; Yun TG; Yoon KR; Kim ID
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6531-6540. PubMed ID: 29381322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon/two-dimensional MoTe
    Cho JS; Ju HS; Lee JK; Kang YC
    Nanoscale; 2017 Feb; 9(5):1942-1950. PubMed ID: 28098302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries.
    Chen Y; Lu Z; Zhou L; Mai YW; Huang H
    Nanoscale; 2012 Nov; 4(21):6800-5. PubMed ID: 23000946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries.
    Zheng F; He M; Yang Y; Chen Q
    Nanoscale; 2015 Feb; 7(8):3410-7. PubMed ID: 25631451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries.
    Park GD; Choi SH; Lee JK; Kang YC
    Chemistry; 2014 Sep; 20(38):12183-9. PubMed ID: 25111441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seaweed-Derived Route to Fe2O3 Hollow Nanoparticles/N-Doped Graphene Aerogels with High Lithium Ion Storage Performance.
    Liu L; Yang X; Lv C; Zhu A; Zhu X; Guo S; Chen C; Yang D
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7047-53. PubMed ID: 26943285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Templating synthesis of Fe
    Lin X; Zhang J; Tong X; Li H; Pan X; Ning P; Li Q
    Sci Rep; 2017 Aug; 7(1):9657. PubMed ID: 28851904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Salt-Templated Strategy toward Hollow Iron Selenides-Graphitic Carbon Composite Microspheres with Interconnected Multicavities as High-Performance Anode Materials for Sodium-Ion Batteries.
    Choi JH; Park SK; Kang YC
    Small; 2019 Jan; 15(2):e1803043. PubMed ID: 30484957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A core-shell nanohollow-γ-Fe2O3@graphene hybrid prepared through the Kirkendall process as a high performance anode material for lithium ion batteries.
    Hu J; Zheng J; Tian L; Duan Y; Lin L; Cui S; Peng H; Liu T; Guo H; Wang X; Pan F
    Chem Commun (Camb); 2015 May; 51(37):7855-8. PubMed ID: 25854495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new concept for obtaining SnO2 fiber-in-tube nanostructures with superior electrochemical properties.
    Hong YJ; Yoon JW; Lee JH; Kang YC
    Chemistry; 2015 Jan; 21(1):371-6. PubMed ID: 25450513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.