BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27958441)

  • 1. Innovative algorithm to evaluate the capabilities of visual, near infrared, and infrared technologies for the detection of veins for intravenous cannulation.
    Asrar M; Al-Habaibeh A; Houda M
    Appl Opt; 2016 Dec; 55(34):D67-D75. PubMed ID: 27958441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared imaging in intravenous cannulation in children: a cluster randomized clinical trial.
    Cuper NJ; de Graaff JC; Verdaasdonk RM; Kalkman CJ
    Pediatrics; 2013 Jan; 131(1):e191-7. PubMed ID: 23230072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating NIR vascular imaging to support intravenous cannulation in awake children difficult to cannulate; a randomized clinical trial.
    de Graaff JC; Cuper NJ; van Dijk AT; Timmers-Raaijmaakers BC; van der Werff DB; Kalkman CJ
    Paediatr Anaesth; 2014 Nov; 24(11):1174-9. PubMed ID: 25088349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vein Pattern Locating Technology for Cannulation: A Review of the Low-Cost Vein Finder Prototypes Utilizing near Infrared (NIR) Light to Improve Peripheral Subcutaneous Vein Selection for Phlebotomy.
    Pan CT; Francisco MD; Yen CK; Wang SY; Shiue YL
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difficult arterial cannulation in children: is a near-infrared vascular imaging system the answer?
    Cuper NJ; de Graaff JC; Hartman BJ; Verdaasdonk RM; Kalkman CJ
    Br J Anaesth; 2012 Sep; 109(3):420-6. PubMed ID: 22735300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing an LED array for an infrared illumination source using the near field for venous pattern detection.
    Vargas-Treviño M; Gutierrez-Gutiérrez J; Rodríguez-Lelis JM; López Apreza E
    Appl Opt; 2020 Mar; 59(9):2858-2865. PubMed ID: 32225835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral intravenous cannulation with support of infrared laser vein viewing system in a pre-operation setting in pediatric patients.
    Rothbart A; Yu P; Müller-Lobeck L; Spies CD; Wernecke KD; Nachtigall I
    BMC Res Notes; 2015 Sep; 8():463. PubMed ID: 26391665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared light to aid peripheral intravenous cannulation in children: a cluster randomised clinical trial of three devices.
    de Graaff JC; Cuper NJ; Mungra RA; Vlaardingerbroek K; Numan SC; Kalkman CJ
    Anaesthesia; 2013 Aug; 68(8):835-45. PubMed ID: 23763614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A device for improving the visual clarity and dimension of veins.
    Asrar M; Al-Habaibeh A; Shakmak B; Shaw SJ
    Br J Nurs; 2018 Oct; 27(19):S26-S36. PubMed ID: 30346822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D and multispectral imaging for subcutaneous veins detection.
    Paquit VC; Tobin KW; Price JR; Mèriaudeau F
    Opt Express; 2009 Jul; 17(14):11360-5. PubMed ID: 19582050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effectiveness of a near-infrared vascular imaging device to support intravenous cannulation in children with dark skin color: a cluster randomized clinical trial.
    van der Woude OC; Cuper NJ; Getrouw C; Kalkman CJ; de Graaff JC
    Anesth Analg; 2013 Jun; 116(6):1266-71. PubMed ID: 23649104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive Real-Time Near Infrared (NIR) Vein Finder Imaging Device to Improve Peripheral Subcutaneous Vein Selection in Venipuncture for Clinical Laboratory Testing.
    Francisco MD; Chen WF; Pan CT; Lin MC; Wen ZH; Liao CF; Shiue YL
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33808493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An innovative approach to near-infrared spectroscopy using a standard mobile device and its clinical application in the real-time visualization of peripheral veins.
    Juric S; Zalik B
    BMC Med Inform Decis Mak; 2014 Nov; 14():100. PubMed ID: 25421099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utility of near-infrared light devices for pediatric peripheral intravenous cannulation: a systematic review and meta-analysis.
    Park JM; Kim MJ; Yim HW; Lee WC; Jeong H; Kim NJ
    Eur J Pediatr; 2016 Dec; 175(12):1975-1988. PubMed ID: 27785562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Making the invisible visible: near-infrared spectroscopy and phlebotomy in children.
    Strehle EM
    Telemed J E Health; 2010 Oct; 16(8):889-93. PubMed ID: 20925568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective evaluation of venous access difficulty and a near-infrared vein visualizer at four French haemophilia treatment centres.
    Guillon P; Makhloufi M; Baillie S; Roucoulet C; Dolimier E; Masquelier AM
    Haemophilia; 2015 Jan; 21(1):21-6. PubMed ID: 25335191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multisensory System for the Detection and Localization of Peripheral Subcutaneous Veins.
    Fernández R; Armada M
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28422075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vein visualization: patient characteristic factors and efficacy of a new infrared vein finder technology.
    Chiao FB; Resta-Flarer F; Lesser J; Ng J; Ganz A; Pino-Luey D; Bennett H; Perkins C; Witek B
    Br J Anaesth; 2013 Jun; 110(6):966-71. PubMed ID: 23384732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards a low-cost mobile subcutaneous vein detection solution using near-infrared spectroscopy.
    Juric S; Flis V; Debevc M; Holzinger A; Zalik B
    ScientificWorldJournal; 2014; 2014():365902. PubMed ID: 24883388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and clinical application of near-infrared surgical microscope: preliminary report.
    Kuroiwa T; Kajimoto Y; Ohta T
    Minim Invasive Neurosurg; 2001 Dec; 44(4):240-2. PubMed ID: 11830786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.