These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 27958591)

  • 1. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state.
    Brasch V; Geiselmann M; Pfeiffer MH; Kippenberg TJ
    Opt Express; 2016 Dec; 24(25):29312-29320. PubMed ID: 27958591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators.
    Gong Z; Bruch A; Shen M; Guo X; Jung H; Fan L; Liu X; Zhang L; Wang J; Li J; Yan J; Tang HX
    Opt Lett; 2018 Sep; 43(18):4366-4369. PubMed ID: 30211865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From the Lugiato-Lefever equation to microresonator-based soliton Kerr frequency combs.
    Lugiato LA; Prati F; Gorodetsky ML; Kippenberg TJ
    Philos Trans A Math Phys Eng Sci; 2018 Nov; 376(2135):. PubMed ID: 30420551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator.
    Karpov M; Guo H; Kordts A; Brasch V; Pfeiffer MH; Zervas M; Geiselmann M; Kippenberg TJ
    Phys Rev Lett; 2016 Mar; 116(10):103902. PubMed ID: 27015482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breathing dissipative solitons in optical microresonators.
    Lucas E; Karpov M; Guo H; Gorodetsky ML; Kippenberg TJ
    Nat Commun; 2017 Sep; 8(1):736. PubMed ID: 28963496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deterministic generation of single soliton Kerr frequency comb in microresonators by a single shot pulsed trigger.
    Kang Z; Li F; Yuan J; Nakkeeran K; Kutz JN; Wu Q; Yu C; Wai PKA
    Opt Express; 2018 Jul; 26(14):18563-18577. PubMed ID: 30114034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repetition rate tuning and locking of solitons in a microrod resonator.
    Niu R; Wan S; Sun SM; Ma TG; Chen HJ; Wang WQ; Lu Z; Zhang WF; Guo GC; Zou CL; Dong CH
    Opt Lett; 2024 Feb; 49(3):570-573. PubMed ID: 38300061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipative Kerr solitons in optical microresonators.
    Kippenberg TJ; Gaeta AL; Lipson M; Gorodetsky ML
    Science; 2018 Aug; 361(6402):. PubMed ID: 30093576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmonization of chaos into a soliton in Kerr frequency combs.
    Lobanov VE; Lihachev GV; Pavlov NG; Cherenkov AV; Kippenberg TJ; Gorodetsky ML
    Opt Express; 2016 Nov; 24(24):27382-27394. PubMed ID: 27906310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal dissipative structures in optical Kerr resonators with transient loss fluctuation.
    Chen Y; Liu T; Sun S; Guo H
    Opt Express; 2021 Oct; 29(22):35776-35791. PubMed ID: 34809005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally stable access to microresonator solitons via slow pump modulation.
    Wildi T; Brasch V; Liu J; Kippenberg TJ; Herr T
    Opt Lett; 2019 Sep; 44(18):4447-4450. PubMed ID: 31517903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and Nonlinear Dissipative-Soliton Dynamics in Kerr-Microresonator Frequency Combs.
    Stone JR; Briles TC; Drake TE; Spencer DT; Carlson DR; Diddams SA; Papp SB
    Phys Rev Lett; 2018 Aug; 121(6):063902. PubMed ID: 30141662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode spectrum and temporal soliton formation in optical microresonators.
    Herr T; Brasch V; Jost JD; Mirgorodskiy I; Lihachev G; Gorodetsky ML; Kippenberg TJ
    Phys Rev Lett; 2014 Sep; 113(12):123901. PubMed ID: 25279630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dark-Bright Soliton Bound States in a Microresonator.
    Zhang S; Bi T; Ghalanos GN; Moroney NP; Del Bino L; Del'Haye P
    Phys Rev Lett; 2022 Jan; 128(3):033901. PubMed ID: 35119896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surpassing the nonlinear conversion efficiency of soliton microcombs.
    Helgason ÓB; Girardi M; Ye Z; Lei F; Schröder J; Torres-Company V
    Nat Photonics; 2023; 17(11):992-999. PubMed ID: 37920810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-referenced photonic chip soliton Kerr frequency comb.
    Brasch V; Lucas E; Jost JD; Geiselmann M; Kippenberg TJ
    Light Sci Appl; 2017 Jan; 6(1):e16202. PubMed ID: 30167198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral Purification of Microwave Signals with Disciplined Dissipative Kerr Solitons.
    Weng W; Lucas E; Lihachev G; Lobanov VE; Guo H; Gorodetsky ML; Kippenberg TJ
    Phys Rev Lett; 2019 Jan; 122(1):013902. PubMed ID: 31012679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heteronuclear soliton molecules in optical microresonators.
    Weng W; Bouchand R; Lucas E; Obrzud E; Herr T; Kippenberg TJ
    Nat Commun; 2020 May; 11(1):2402. PubMed ID: 32409631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic chip-based soliton frequency combs covering the biological imaging window.
    Karpov M; Pfeiffer MHP; Liu J; Lukashchuk A; Kippenberg TJ
    Nat Commun; 2018 Mar; 9(1):1146. PubMed ID: 29559634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator.
    Xu G; Nielsen AU; Garbin B; Hill L; Oppo GL; Fatome J; Murdoch SG; Coen S; Erkintalo M
    Nat Commun; 2021 Jun; 12(1):4023. PubMed ID: 34188030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.