These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27958711)

  • 1. Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.
    Younis A; Chu D; Shah AH; Du H; Li S
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1585-1592. PubMed ID: 27958711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide.
    Tappertzhofen S; Mündelein H; Valov I; Waser R
    Nanoscale; 2012 May; 4(10):3040-3. PubMed ID: 22504836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generic relevance of counter charges for cation-based nanoscale resistive switching memories.
    Tappertzhofen S; Valov I; Tsuruoka T; Hasegawa T; Waser R; Aono M
    ACS Nano; 2013 Jul; 7(7):6396-402. PubMed ID: 23786236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial redox processes in memristive devices based on valence change and electrochemical metallization.
    Liu K; Qin L; Zhang X; Zhu J; Sun X; Yang K; Cai Y; Yang Y; Huang R
    Faraday Discuss; 2019 Feb; 213(0):41-52. PubMed ID: 30357249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V; Gulaboski R
    J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Metal-Oxide Interactions in Resistive Switching Memories.
    Cho DY; Luebben M; Wiefels S; Lee KS; Valov I
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19287-19295. PubMed ID: 28508634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Materials Configuration for Optimizing Redox-Based Resistive Switching Memories.
    Chen S; Valov I
    Adv Mater; 2022 Jan; 34(3):e2105022. PubMed ID: 34695257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bond nature of active metal ions in SiO2-based electrochemical metallization memory cells.
    Cho DY; Tappertzhofen S; Waser R; Valov I
    Nanoscale; 2013 Mar; 5(5):1781-4. PubMed ID: 23354222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical metallization cell with anion supplying active electrode.
    Zhang Z; Wang Y; Luo Y; He Y; Ma M; Yang R; Li H
    Sci Rep; 2018 Aug; 8(1):12617. PubMed ID: 30135453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems.
    Wedig A; Luebben M; Cho DY; Moors M; Skaja K; Rana V; Hasegawa T; Adepalli KK; Yildiz B; Waser R; Valov I
    Nat Nanotechnol; 2016 Jan; 11(1):67-74. PubMed ID: 26414197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemically prepared oxides for resistive switching memories.
    Zaffora A; Di Quarto F; Habazaki H; Valov I; Santamaria M
    Faraday Discuss; 2019 Feb; 213(0):165-181. PubMed ID: 30357186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Tantalum Oxide for Resistive Switching Memories.
    Zaffora A; Cho DY; Lee KS; Di Quarto F; Waser R; Santamaria M; Valov I
    Adv Mater; 2017 Nov; 29(43):. PubMed ID: 28984996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excellent Resistive Switching Performance of Cu-Se-Based Atomic Switch Using Lanthanide Metal Nanolayer at the Cu-Se/Al
    Woo H; Vishwanath SK; Jeon S
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8124-8131. PubMed ID: 29441789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Insight into the Origin of Various Operation Voltages of Cation-Based Resistance Switches.
    Xiao B; Yu XF; Cheng JB
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31978-31985. PubMed ID: 27800674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SET kinetics of electrochemical metallization cells: influence of counter-electrodes in SiO
    Lübben M; Menzel S; Park SG; Yang M; Waser R; Valov I
    Nanotechnology; 2017 Mar; 28(13):135205. PubMed ID: 28248653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces.
    Yang CS; Shang DS; Chai YS; Yan LQ; Shen BG; Sun Y
    Phys Chem Chem Phys; 2016 May; 18(18):12466-75. PubMed ID: 26996952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Zr top electrode on tantalum oxide-based electrochemical metallization resistive switching memory: towards synaptic functionalities.
    Raeis-Hosseini N; Chen S; Papavassiliou C; Valov I
    RSC Adv; 2022 May; 12(22):14235-14245. PubMed ID: 35558855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forming and switching mechanisms of a cation-migration-based oxide resistive memory.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2010 Oct; 21(42):425205. PubMed ID: 20864781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of anion transfer across the liquid | liquid interface of a thin organic film modified electrode, studied by means of square-wave voltammetry.
    Quentel F; Mirceski V; L'Her M
    Anal Chem; 2005 Apr; 77(7):1940-9. PubMed ID: 15801722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistive switching memory based on bioinspired natural solid polymer electrolytes.
    Raeis Hosseini N; Lee JS
    ACS Nano; 2015 Jan; 9(1):419-26. PubMed ID: 25513838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.