These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27958740)

  • 1. Binding Affinity of Inorganic Mercury and Cadmium to Biomimetic Erythrocyte Membranes.
    Hassanin M; Kerek E; Chiu M; Anikovskiy M; Prenner EJ
    J Phys Chem B; 2016 Dec; 120(50):12872-12882. PubMed ID: 27958740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hg2+ and Cd2+ interact differently with biomimetic erythrocyte membranes.
    Le MT; Gailer J; Prenner EJ
    Biometals; 2009 Apr; 22(2):261-74. PubMed ID: 18850280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of inorganic mercury with phospholipid micelles and model membranes. A 31P-NMR study.
    Girault L; Lemaire P; Boudou A; Debouzy JC; Dufourc EJ
    Eur Biophys J; 1996; 24(6):413-21. PubMed ID: 8765713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential binding of Inorganic Mercury to specific lipid classes and its competition with Cadmium.
    Kerek E; Hassanin M; Zhang W; Prenner EJ
    Biochim Biophys Acta Biomembr; 2017 Jul; 1859(7):1211-1221. PubMed ID: 28389203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific interactions of mercury chloride with membranes and other ligands as revealed by mercury-NMR.
    Delnomdedieu M; Boudou A; Georgescauld D; Dufourc EJ
    Chem Biol Interact; 1992 Feb; 81(3):243-69. PubMed ID: 1540995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Cell Biochem Biophys; 2006; 44(2):205-11. PubMed ID: 16456222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of phosphatidylserine and phosphatidylethanolamine content on partitioning of triflupromazine and chlorpromazine between phosphatidylcholine-aminophospholipid bilayer vesicles and water studied by second-derivative spectrophotometry.
    Takegami S; Kitamura K; Kitade T; Takashima M; Ito M; Nakagawa E; Sone M; Sumitani R; Yasuda Y
    Chem Pharm Bull (Tokyo); 2005 Jan; 53(1):147-50. PubMed ID: 15635254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol.
    Slater SJ; Ho C; Taddeo FJ; Kelly MB; Stubbs CD
    Biochemistry; 1993 Apr; 32(14):3714-21. PubMed ID: 8466911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intrinsic pKa values for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in monolayers deposited on mercury electrodes.
    Moncelli MR; Becucci L; Guidelli R
    Biophys J; 1994 Jun; 66(6):1969-80. PubMed ID: 8075331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of monovalent alkali metal ions with negatively charged phospholipid membranes.
    Maity P; Saha B; Kumar GS; Karmakar S
    Biochim Biophys Acta; 2016 Apr; 1858(4):706-14. PubMed ID: 26802251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic mercury and cadmium induce rigidity in eukaryotic lipid extracts while mercury also ruptures red blood cells.
    Kerek E; Hassanin M; Prenner EJ
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):710-717. PubMed ID: 29269315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence microscopic characterization of ionic polymer bead-supported phospholipid bilayer membrane systems.
    Haratake M; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2012 Dec; 100():190-6. PubMed ID: 22766297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization.
    Huster D; Arnold K; Gawrisch K
    Biophys J; 2000 Jun; 78(6):3011-8. PubMed ID: 10827979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of lipid chain attached fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) in negatively charged membranes determined by NMR spectroscopy.
    Huster D; Müller P; Arnold K; Herrmann A
    Eur Biophys J; 2003 Mar; 32(1):47-54. PubMed ID: 12632206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures.
    Huster D; Arnold K; Gawrisch K
    Biochemistry; 1998 Dec; 37(49):17299-308. PubMed ID: 9860844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonideal mixing of phosphatidylserine and phosphatidylcholine in the fluid lamellar phase.
    Huang J; Swanson JE; Dibble AR; Hinderliter AK; Feigenson GW
    Biophys J; 1993 Feb; 64(2):413-25. PubMed ID: 8457667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic cadmium affects the fluidity and size of phospholipid based liposomes.
    Kerek EM; Prenner EJ
    Biochim Biophys Acta; 2016 Dec; 1858(12):3169-3181. PubMed ID: 27736635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of imipramine to phospholipid bilayers using radioligand binding assay.
    Fisar Z; Fuksová K; Velenovská M
    Gen Physiol Biophys; 2004 Mar; 23(1):77-99. PubMed ID: 15270130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparative Study of Phosphatidylcholine versus Phosphatidylserine-Based Solid Supported Membranes for the Preparation of Liposome-Rich Interfaces.
    Sacconi A; Tadini-Buoninsegni F; Tiribilli B; Margheri G
    Langmuir; 2018 Oct; 34(40):12183-12190. PubMed ID: 30217106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.