These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27959502)

  • 1. Multi-yolk-shell SnO
    Su L; Xu Y; Xie J; Wang L; Wang Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35172-35179. PubMed ID: 27959502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sn-Co Nanoalloys Encapsulated in N-Doped Carbon Hollow Cubes as a High-Performance Anode Material for Lithium-Ion Batteries.
    Yang J; Zhang J; Zhou X; Ren Y; Jiang M; Tang J
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35216-35223. PubMed ID: 30232876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Carbon-Encapsulated Porous SnO2 Anode for Lithium-Ion Batteries with Much Improved Cyclic Stability.
    Huang B; Li X; Pei Y; Li S; Cao X; Massé RC; Cao G
    Small; 2016 Apr; 12(14):1945-55. PubMed ID: 26882498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries.
    Wang J; Li W; Wang F; Xia Y; Asiri AM; Zhao D
    Nanoscale; 2014 Mar; 6(6):3217-22. PubMed ID: 24500178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly stable SnO
    Choi J; Kim WS; Hong SH
    Nanoscale; 2018 Mar; 10(9):4370-4376. PubMed ID: 29446430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous Double-Shelled Constructed Fe
    Zhao R; Shen X; Wu Q; Zhang X; Li W; Gao G; Zhu L; Ni L; Diao G; Chen M
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24662-24670. PubMed ID: 28682585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.
    Li Y; Zhang H; Chen Y; Shi Z; Cao X; Guo Z; Shen PK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):197-207. PubMed ID: 26654790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent-Free Synthesis of Uniform MOF Shell-Derived Carbon Confined SnO
    He Q; Liu J; Li Z; Li Q; Xu L; Zhang B; Meng J; Wu Y; Mai L
    Small; 2017 Oct; 13(37):. PubMed ID: 28745817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries.
    Zhou D; Song WL; Fan LZ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21472-8. PubMed ID: 26348195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Design and Synthesis of an SnO
    Li Q; Wang Y; Tan Q; Zhong Z; Su F
    Chemistry; 2020 Oct; 26(56):12882-12890. PubMed ID: 32700801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous SnO2-Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries.
    Yan Y; Du F; Shen X; Ji Z; Zhou H; Zhu G
    Dalton Trans; 2014 Dec; 43(46):17544-50. PubMed ID: 25347762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries.
    He M; Yuan L; Hu X; Zhang W; Shu J; Huang Y
    Nanoscale; 2013 Apr; 5(8):3298-305. PubMed ID: 23483088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully reversible lithium storage of tin oxide enabled by self-doping and partial amorphization.
    Pang Y; Wang J; Yang J; Fang F; Sun D; Zheng S
    Nanoscale; 2019 Jul; 11(27):12915-12923. PubMed ID: 31250863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Pot Synthesis of SnO2/C Nanocapsules Composites as Anode Materials for Lithium-Ion Batteries.
    Yang L; Chen K; Dong T; Wang Z; Li G; Zhang Y; Zhang L
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1768-74. PubMed ID: 27433668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries.
    Wang Y; Huang ZX; Shi Y; Wong JI; Ding M; Yang HY
    Sci Rep; 2015 Mar; 5():9164. PubMed ID: 25776280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Facile Microwave Hydrothermal Method for Fabricating SnO
    Liu LL; Li MY; Sun YH; Yang XY; Ma MX; Wang H; An MZ
    Front Chem; 2022; 10():895749. PubMed ID: 35720986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SnO
    Cheng Y; Wang S; Zhou L; Chang L; Liu W; Yin D; Yi Z; Wang L
    Small; 2020 Jul; 16(26):e2000681. PubMed ID: 32495487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ carbon encapsulation of vertical MoS
    Li M; Deng Q; Wang J; Jiang K; Hu Z; Chu J
    Nanoscale; 2018 Jan; 10(2):741-751. PubMed ID: 29243752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constructing Novel Si@SnO2 Core-Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage.
    Zhou ZW; Liu YT; Xie XM; Ye XY
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7092-100. PubMed ID: 26927734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable formation of multi-layered SnO
    Zeng Y; Luo J; Wang Y; Qiao L; Zou B; Zheng W
    Nanoscale; 2017 Nov; 9(44):17576-17584. PubMed ID: 29112213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.