These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27959502)

  • 41. Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries.
    Reddy MJ; Ryu SH; Shanmugharaj AM
    Nanoscale; 2016 Jan; 8(1):471-82. PubMed ID: 26628211
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tin dioxide@carbon core-shell nanoarchitectures anchored on wrinkled graphene for ultrafast and stable lithium storage.
    Zhou X; Liu W; Yu X; Liu Y; Fang Y; Klankowski S; Yang Y; Brown JE; Li J
    ACS Appl Mater Interfaces; 2014 May; 6(10):7434-43. PubMed ID: 24784816
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Natural Stibnite for Lithium-/Sodium-Ion Batteries: Carbon Dots Evoked High Initial Coulombic Efficiency.
    Xiang Y; Xu L; Yang L; Ye Y; Ge Z; Wu J; Deng W; Zou G; Hou H; Ji X
    Nanomicro Lett; 2022 Jun; 14(1):136. PubMed ID: 35713745
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synergistic effect of SnO2/ZnWO4 core-shell nanorods with high reversible lithium storage capacity.
    Xing LL; Yuan S; He B; Zhao YY; Wu XL; Xue XY
    Chem Asian J; 2013 Jul; 8(7):1530-5. PubMed ID: 23653406
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sandwiched spherical tin dioxide/graphene with a three-dimensional interconnected closed pore structure for lithium storage.
    Zhao B; Wang Z; Wang S; Jiang J; Si J; Huang S; Chen Z; Li W; Jiang Y
    Nanoscale; 2018 Aug; 10(34):16116-16126. PubMed ID: 30117518
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving Lithium-Ion Half-/Full-Cell Performance of WO
    Iftikhar M; Ali B; Nisar T; Wagner V; Haider A; Ata-Ur-Rehman ; Hussain S; Bahadar A; Saleem M; Abbas SM
    ChemSusChem; 2021 Feb; 14(3):917-928. PubMed ID: 33241652
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Core-shell Ti@Si coaxial nanorod arrays formed directly on current collectors for lithium-ion batteries.
    Meng X; Deng D
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6867-74. PubMed ID: 25749298
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polymer-Templated Formation of Polydopamine-Coated SnO
    Jiang B; He Y; Li B; Zhao S; Wang S; He YB; Lin Z
    Angew Chem Int Ed Engl; 2017 Feb; 56(7):1869-1872. PubMed ID: 28105794
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries.
    Qiu W; Jiao J; Xia J; Zhong H; Chen L
    Chemistry; 2015 Mar; 21(11):4359-67. PubMed ID: 25643650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity.
    Kong J; Liu Z; Yang Z; Tan HR; Xiong S; Wong SY; Li X; Lu X
    Nanoscale; 2012 Jan; 4(2):525-30. PubMed ID: 22127410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon Coated SnS/SnO
    Lian Q; Zhou G; Zeng X; Wu C; Wei Y; Cui C; Wei W; Chen L; Li C
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30256-30263. PubMed ID: 27767295
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microwave-Assisted Synthesis of SnO2@polypyrrole Nanotubes and Their Pyrolyzed Composite as Anode for Lithium-Ion Batteries.
    Du X; Yang T; Lin J; Feng T; Zhu J; Lu L; Xu Y; Wang J
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15598-606. PubMed ID: 27243786
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hierarchical SnO2 /Carbon Nanofibrous Composite Derived from Cellulose Substance as Anode Material for Lithium-Ion Batteries.
    Wang M; Li S; Zhang Y; Huang J
    Chemistry; 2015 Nov; 21(45):16195-202. PubMed ID: 26397841
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Feasible Defect Engineering by Employing Metal Organic Framework Templates into One-Dimensional Metal Oxides for Battery Applications.
    Cheong JY; Koo WT; Kim C; Jung JW; Kim ID
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20540-20549. PubMed ID: 29862803
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Beyond yolk-shell nanoparticles: Fe3O4@Fe3C core@shell nanoparticles as yolks and carbon nanospindles as shells for efficient lithium ion storage.
    Zhang J; Wang K; Xu Q; Zhou Y; Cheng F; Guo S
    ACS Nano; 2015 Mar; 9(3):3369-76. PubMed ID: 25716070
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional SnO2/carbon on Cu foam for high-performance lithium ion battery anodes.
    Chen W; Maloney S; Wang W
    Nanotechnology; 2016 Oct; 27(41):415401. PubMed ID: 27587237
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Yolk-Shell MnO@ZnMn
    Zhong M; Yang D; Xie C; Zhang Z; Zhou Z; Bu XH
    Small; 2016 Oct; 12(40):5564-5571. PubMed ID: 27562457
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.
    Na Z; Huang G; Liang F; Yin D; Wang L
    Chemistry; 2016 Aug; 22(34):12081-7. PubMed ID: 27406922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries.
    Wu P; Du N; Zhang H; Yu J; Qi Y; Yang D
    Nanoscale; 2011 Feb; 3(2):746-50. PubMed ID: 21113552
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage.
    Liu Y; Liu P; Wu D; Huang Y; Tang Y; Su Y; Zhang F; Feng X
    Chemistry; 2015 Mar; 21(14):5617-22. PubMed ID: 25694249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.