BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27959518)

  • 1. Enantioselective Oxidative Homocoupling and Cross-Coupling of 2-Naphthols Catalyzed by Chiral Iron Phosphate Complexes.
    Narute S; Parnes R; Toste FD; Pappo D
    J Am Chem Soc; 2016 Dec; 138(50):16553-16560. PubMed ID: 27959518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-Complex-Catalyzed Asymmetric Aerobic Oxidative Cross-Coupling of 2-Naphthols: Enantioselective Synthesis of 3,3'-Substituted C
    Tian JM; Wang AF; Yang JS; Zhao XJ; Tu YQ; Zhang SY; Chen ZM
    Angew Chem Int Ed Engl; 2019 Aug; 58(32):11023-11027. PubMed ID: 31131524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atroposelective Synthesis of C-C Axially Chiral Compounds via Mono- and Dinuclear Vanadium Catalysis.
    Kumar A; Sasai H; Takizawa S
    Acc Chem Res; 2022 Oct; 55(20):2949-2965. PubMed ID: 36206455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioenriched synthesis of C1-symmetric BINOLs: iron-catalyzed cross-coupling of 2-naphthols and some mechanistic insight.
    Egami H; Matsumoto K; Oguma T; Kunisu T; Katsuki T
    J Am Chem Soc; 2010 Oct; 132(39):13633-5. PubMed ID: 20831174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective Iron/Bisquinolyldiamine Ligand-Catalyzed Oxidative Coupling Reaction of 2-Naphthols.
    Wu LY; Usman M; Liu WB
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32075144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of dinuclear vanadium catalysts for enantioselective coupling of 2-naphthols via a dual activation mechanism.
    Takizawa S
    Chem Pharm Bull (Tokyo); 2009 Nov; 57(11):1179-88. PubMed ID: 19881264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective synthesis of binaphthyl polymers using chiral asymmetric phenolic coupling catalysts: oxidative coupling and tandem glaser/oxidative coupling.
    Morgan BJ; Xie X; Phuan PW; Kozlowski MC
    J Org Chem; 2007 Aug; 72(16):6171-82. PubMed ID: 17629337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in the Asymmetric Synthesis of BINOL Derivatives.
    da Silva EM; Vidal HDA; Januário MAP; Corrêa AG
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Axially Chiral Ligand-Enabled Copper-Catalyzed Asymmetric Oxidative Coupling of 2-Naphthols for the Synthesis of 6,6'-Disubstituted BINOLs.
    Wang P; Cen S; Gao J; Shen A; Zhang Z
    Org Lett; 2022 Apr; 24(12):2321-2326. PubMed ID: 35311255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant.
    Guo QX; Wu ZJ; Luo ZB; Liu QZ; Ye JL; Luo SW; Cun LF; Gong LZ
    J Am Chem Soc; 2007 Nov; 129(45):13927-38. PubMed ID: 17956093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron Phosphate Catalyzed Asymmetric Cross-Dehydrogenative Coupling of 2-Naphthols with β-Ketoesters.
    Narute S; Pappo D
    Org Lett; 2017 Jun; 19(11):2917-2920. PubMed ID: 28498665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic asymmetric coupling of 2-naphthols by chiral tridentate oxovanadium (IV) complexes.
    Hon SW; Li CH; Kuo JH; Barhate NB; Liu YH; Wang Y; Chen CT
    Org Lett; 2001 Mar; 3(6):869-72. PubMed ID: 11263903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical and Scalable Kinetic Resolution of BINOLs Mediated by a Chiral Counterion.
    Jones BA; Balan T; Jolliffe JD; Campbell CD; Smith MD
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4596-4600. PubMed ID: 30779415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-catalyzed oxidative cross-coupling of phenols and alkenes.
    Kshirsagar UA; Regev C; Parnes R; Pappo D
    Org Lett; 2013 Jun; 15(12):3174-7. PubMed ID: 23758172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition-metal-catalyzed enantioselective heteroatom-hydrogen bond insertion reactions.
    Zhu SF; Zhou QL
    Acc Chem Res; 2012 Aug; 45(8):1365-77. PubMed ID: 22651217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.
    Li YY; Yu SL; Shen WY; Gao JX
    Acc Chem Res; 2015 Sep; 48(9):2587-98. PubMed ID: 26301426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles.
    Yu J; Shi F; Gong LZ
    Acc Chem Res; 2011 Nov; 44(11):1156-71. PubMed ID: 21800828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Enantioselective Oxidative C-H/C-H Cross-Coupling Reaction: Highly Efficient Method To Prepare Planar Chiral Ferrocenes.
    Gao DW; Gu Q; You SL
    J Am Chem Soc; 2016 Mar; 138(8):2544-7. PubMed ID: 26891702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly enantioselective organocatalytic formation of a quaternary carbon center via chiral Brønsted acid catalyzed self-coupling of enamides.
    Baudequin C; Zamfir A; Tsogoeva SB
    Chem Commun (Camb); 2008 Oct; (38):4637-9. PubMed ID: 18815709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.