These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 27959557)
1. Magnetic-Field Sensitivity of Storage Modulus for Bimodal Magnetic Elastomers. Nanpo J; Nagashima K; Umehara Y; Kawai M; Mitsumata T J Phys Chem B; 2016 Dec; 120(50):12993-13000. PubMed ID: 27959557 [TBL] [Abstract][Full Text] [Related]
2. Magnetic Elastomers with Smart Variable Elasticity Mimetic to Sea Cucumber. Kobayashi Y; Akama S; Ohori S; Kawai M; Mitsumata T Biomimetics (Basel); 2019 Oct; 4(4):. PubMed ID: 31601006 [TBL] [Abstract][Full Text] [Related]
3. Efficient Chain Formation of Magnetic Particles in Elastomers with Limited Space. Akama S; Kobayashi Y; Kawai M; Mitsumata T Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32024187 [TBL] [Abstract][Full Text] [Related]
4. Extremely Long Chains of Magnetic Particles via Large Plastic Beads Observed in Bimodal Magnetic Elastomers. Urano R; Chen K; Akama S; Takeda Y; Maruyama T; Suzuki M; Takeuchi A; Uesugi M; Kawai M; Mitsumata T Langmuir; 2023 Apr; 39(14):5137-5144. PubMed ID: 36995288 [TBL] [Abstract][Full Text] [Related]
5. Railway Actuator Made of Magnetic Elastomers and Driven by a Magnetic Field. Umehara Y; Yamanaga Y; Akama S; Kato S; Kamoshita S; Kawai M; Mitsumata T Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961276 [TBL] [Abstract][Full Text] [Related]
6. Voids induce wide-range modulation of elasticity for magnetic elastomers II. Urano R; Kawai M; Mitsumata T Soft Matter; 2023 Nov; 19(42):8091-8100. PubMed ID: 37830259 [TBL] [Abstract][Full Text] [Related]
7. Effect of Sonication Time on Magnetorheological Effect for Monomodal Magnetic Elastomers. Watanabe M; Ikeda J; Takeda Y; Kawai M; Mitsumata T Gels; 2018 May; 4(2):. PubMed ID: 30674825 [TBL] [Abstract][Full Text] [Related]
8. Voids induce wide-range modulation of elasticity for magnetic elastomers. Urano R; Saosamniang P; Kaneko T; Kawai M; Mitsumata T Soft Matter; 2022 Dec; 18(48):9242-9248. PubMed ID: 36437636 [TBL] [Abstract][Full Text] [Related]
9. Particle mobility and macroscopic magnetorheological effects for polyurethane magnetic elastomers. Urano R; Watanabe K; Chen K; Liang X; Kawai M; Mitsumata T Soft Matter; 2024 Jun; 20(22):4456-4465. PubMed ID: 38780303 [TBL] [Abstract][Full Text] [Related]
10. Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles. Mitsumata T; Honda A; Kanazawa H; Kawai M J Phys Chem B; 2012 Oct; 116(40):12341-8. PubMed ID: 22974066 [TBL] [Abstract][Full Text] [Related]
11. In Situ Observation of the Movement of Magnetic Particles in Polyurethane Elastomer Densely Packed Magnetic Particles Using Synchrotron Radiation X-ray Computed Tomography. Chen K; Watanabe M; Takeda Y; Maruyama T; Uesugi M; Takeuchi A; Suzuki M; Uesugi K; Yasutake M; Kawai M; Mitsumata T Langmuir; 2022 Nov; 38(44):13497-13505. PubMed ID: 36288501 [TBL] [Abstract][Full Text] [Related]
12. Particle dispersibility and giant reduction in dynamic modulus of magnetic gels containing barium ferrite and iron oxide particles. Mitsumata T; Wakabayashi T; Okazaki T J Phys Chem B; 2008 Nov; 112(45):14132-9. PubMed ID: 18939787 [TBL] [Abstract][Full Text] [Related]
13. Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. Sorokin VV; Ecker E; Stepanov GV; Shamonin M; Monkman GJ; Kramarenko EY; Khokhlov AR Soft Matter; 2014 Nov; 10(43):8765-76. PubMed ID: 25278263 [TBL] [Abstract][Full Text] [Related]
14. Magnetically Tunable Vibration Transmissibility for Polyurethane Magnetic Elastomers. Endo H; Kato S; Watanebe M; Kikuchi T; Kawai M; Mitsumata T Polymers (Basel); 2018 Jan; 10(1):. PubMed ID: 30966140 [TBL] [Abstract][Full Text] [Related]
15. Magnetorheological Response for Magnetic Elastomers Containing Carbonyl Iron Particles Coated with Poly(methyl methacrylate). Takahashi D; Sainath AVS; Ikeda J; Budpud K; Kaneko T; Kawai M; Mitsumata T Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33494391 [TBL] [Abstract][Full Text] [Related]
16. The Effect of Microparticles on the Storage Modulus and Durability Behavior of Magnetorheological Elastomer. Johari MAF; Mazlan SA; Nordin NA; Ubaidillah U; Aziz SAA; Nazmi N; Johari N; Choi SB Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442570 [TBL] [Abstract][Full Text] [Related]
17. Improved tunable range of the field-induced storage modulus by using flower-like particles as the active phase of magnetorheological elastomers. Tong Y; Dong X; Qi M Soft Matter; 2018 May; 14(18):3504-3509. PubMed ID: 29670977 [TBL] [Abstract][Full Text] [Related]
18. Single-particle mechanism of magnetostriction in magnetoactive elastomers. Kalita VM; Snarskii AA; Zorinets D; Shamonin M Phys Rev E; 2016 Jun; 93(6):062503. PubMed ID: 27415313 [TBL] [Abstract][Full Text] [Related]
19. Particle Size in Secondary Particle and Magnetic Response for Carrageenan Magnetic Hydrogels. Ikeda J; Takahashi D; Watanabe M; Kawai M; Mitsumata T Gels; 2019 Aug; 5(3):. PubMed ID: 31405135 [TBL] [Abstract][Full Text] [Related]
20. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers. Kalita VM; Snarskii AA; Shamonin M; Zorinets D Phys Rev E; 2017 Mar; 95(3-1):032503. PubMed ID: 28415257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]