BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 27959832)

  • 1. Automated Detection and Segmentation of Vascular Structures of Skin Lesions Seen in Dermoscopy, With an Application to Basal Cell Carcinoma Classification.
    Kharazmi P; AlJasser MI; Lui H; Wang ZJ; Lee TK
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1675-1684. PubMed ID: 27959832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images.
    Kaur R; LeAnder R; Mishra NK; Hagerty JR; Kasmi R; Stanley RJ; Celebi ME; Stoecker WV
    Skin Res Technol; 2017 Aug; 23(3):416-428. PubMed ID: 27892649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptable texture-based segmentation by variance and intensity for automatic detection of semitranslucent and pink blush areas in basal cell carcinoma.
    Kefel S; Pelin Kefel S; LeAnder RW; Kaur R; Kasmi R; Mishra NK; Rader RK; Cole JG; Woolsey ZT; Stoecker WV
    Skin Res Technol; 2016 Nov; 22(4):412-422. PubMed ID: 26991418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel cumulative level difference mean based GLDM and modified ABCD features ranked using eigenvector centrality approach for four skin lesion types classification.
    Wahba MA; Ashour AS; Guo Y; Napoleon SA; Elnaby MMA
    Comput Methods Programs Biomed; 2018 Oct; 165():163-174. PubMed ID: 30337071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic telangiectasia analysis in dermoscopy images using adaptive critic design.
    Cheng B; Stanley RJ; Stoecker WV; Hinton K
    Skin Res Technol; 2012 Nov; 18(4):389-96. PubMed ID: 22136115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic detection of basal cell carcinoma using telangiectasia analysis in dermoscopy skin lesion images.
    Cheng B; Erdos D; Stanley RJ; Stoecker WV; Calcara DA; Gómez DD
    Skin Res Technol; 2011 Aug; 17(3):278-87. PubMed ID: 23815446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melanoma recognition in dermoscopy images using lesion's peripheral region information.
    Tajeddin NZ; Asl BM
    Comput Methods Programs Biomed; 2018 Sep; 163():143-153. PubMed ID: 30119849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised sub-segmentation for pigmented skin lesions.
    Liu Z; Sun J; Smith M; Smith L; Warr R
    Skin Res Technol; 2012 Feb; 18(1):77-87. PubMed ID: 21545650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A methodological approach to the classification of dermoscopy images.
    Celebi ME; Kingravi HA; Uddin B; Iyatomi H; Aslandogan YA; Stoecker WV; Moss RH
    Comput Med Imaging Graph; 2007 Sep; 31(6):362-73. PubMed ID: 17387001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Computer-Aided Decision Support System for Detection and Localization of Cutaneous Vasculature in Dermoscopy Images Via Deep Feature Learning.
    Kharazmi P; Zheng J; Lui H; Jane Wang Z; Lee TK
    J Med Syst; 2018 Jan; 42(2):33. PubMed ID: 29318397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ICA-based method for the segmentation of pigmented skin lesions in macroscopic images.
    Cavalcanti PG; Scharcanski J; Di Persia LE; Milone DH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5993-6. PubMed ID: 22255705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding.
    Garcia-Arroyo JL; Garcia-Zapirain B
    Comput Methods Programs Biomed; 2019 Jan; 168():11-19. PubMed ID: 30527129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.
    Bi L; Kim J; Ahn E; Kumar A; Fulham M; Feng D
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2065-2074. PubMed ID: 28600236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin lesion image segmentation using Delaunay Triangulation for melanoma detection.
    Pennisi A; Bloisi DD; Nardi D; Giampetruzzi AR; Mondino C; Facchiano A
    Comput Med Imaging Graph; 2016 Sep; 52():89-103. PubMed ID: 27215953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
    Chatterjee S; Dey D; Munshi S
    Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A feature fusion system for basal cell carcinoma detection through data-driven feature learning and patient profile.
    Kharazmi P; Kalia S; Lui H; Wang ZJ; Lee TK
    Skin Res Technol; 2018 May; 24(2):256-264. PubMed ID: 29057507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic lesion border selection in dermoscopy images using morphology and color features.
    Mishra NK; Kaur R; Kasmi R; Hagerty JR; LeAnder R; Stanley RJ; Moss RH; Stoecker WV
    Skin Res Technol; 2019 Jul; 25(4):544-552. PubMed ID: 30868667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Region growing by sector analysis for detection of blue-gray ovoids in basal cell carcinoma.
    Pelin Guvenc S; Leander RW; Kefel S; Rader RK; Hinton KA; Stricklin SM; Stoecker WV
    Skin Res Technol; 2013 Aug; 19(3):258-64. PubMed ID: 23724851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density-based parallel skin lesion border detection with webCL.
    Lemon J; Kockara S; Halic T; Mete M
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S5. PubMed ID: 26423836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A system for the detection of pigment network in dermoscopy images using directional filters.
    Barata C; Marques JS; Rozeira J
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2744-54. PubMed ID: 22829364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.