These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27960283)

  • 1. Metabolism of Quercetin and Naringenin by Food-Grade Fungal Inoculum, Rhizopus azygosporus Yuan et Jong (ATCC 48108).
    Gonzales GB; Smagghe G; Wittevrongel J; Huynh NT; Van Camp J; Raes K
    J Agric Food Chem; 2016 Dec; 64(49):9263-9267. PubMed ID: 27960283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vasorelaxant activity of 7-β-O-glycosides biosynthesized from flavonoids.
    Penso J; Cordeiro KC; da Cunha CR; da Silva Castro PF; Martins DR; Lião LM; Rocha ML; de Oliveira V
    Eur J Pharmacol; 2014 Jun; 733():75-80. PubMed ID: 24704375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the glycosylation of flavonoids on interaction with protein.
    Cao H; Wu D; Wang H; Xu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):972-5. PubMed ID: 19493695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of molecular properties and reactions with oxidants for quercetin, catechin, and naringenin.
    Veiko AG; Lapshina EA; Zavodnik IB
    Mol Cell Biochem; 2021 Dec; 476(12):4287-4299. PubMed ID: 34406575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutagenic and antimutagenic effects of methanol extracts of unfermented and fermented black soybeans.
    Hung YH; Huang HY; Chou CC
    Int J Food Microbiol; 2007 Aug; 118(1):62-8. PubMed ID: 17628128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption and disposition of naringenin and quercetin after simultaneous administration via intestinal perfusion in mice.
    Orrego-Lagarón N; Martínez-Huélamo M; Quifer-Rada P; Lamuela-Raventos RM; Escribano-Ferrer E
    Food Funct; 2016 Sep; 7(9):3880-9. PubMed ID: 27515345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity.
    Day AJ; DuPont MS; Ridley S; Rhodes M; Rhodes MJ; Morgan MR; Williamson G
    FEBS Lett; 1998 Sep; 436(1):71-5. PubMed ID: 9771896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate preference of citrus naringenin rhamnosyltransferases and their application to flavonoid glycoside production in fission yeast.
    Ohashi T; Hasegawa Y; Misaki R; Fujiyama K
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):687-96. PubMed ID: 26433966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dietary flavonoids on the transport of cimetidine via P-glycoprotein and cationic transporters in Caco-2 and LLC-PK1 cell models.
    Taur JS; Rodriguez-Proteau R
    Xenobiotica; 2008 Dec; 38(12):1536-50. PubMed ID: 18951251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains.
    Hachmeister KA; Fung DY
    Crit Rev Microbiol; 1993; 19(3):137-88. PubMed ID: 8267862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi.
    Lee IH; Chou CC
    J Agric Food Chem; 2006 Feb; 54(4):1309-14. PubMed ID: 16478253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pig caecum model: a suitable tool to study the intestinal metabolism of flavonoids.
    Labib S; Erb A; Kraus M; Wickert T; Richling E
    Mol Nutr Food Res; 2004 Sep; 48(4):326-32. PubMed ID: 15497184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of Zearalenone Metabolites in Tempeh Fermentation.
    Borzekowski A; Anggriawan R; Auliyati M; Kunte HJ; Koch M; Rohn S; Karlovsky P; Maul R
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31344953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The production of a new tempeh-like fermented soybean containing a high level of gamma-aminobutyric acid by anaerobic incubation with Rhizopus.
    Aoki H; Uda I; Tagami K; Furuya Y; Endo Y; Fujimoto K
    Biosci Biotechnol Biochem; 2003 May; 67(5):1018-23. PubMed ID: 12834278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotechnological Production of Dimethoxyflavonoids Using a Fusion Flavonoid O-Methyltransferase Possessing Both 3'- and 7-O-Methyltransferase Activities.
    Lee D; Park HL; Lee SW; Bhoo SH; Cho MH
    J Nat Prod; 2017 May; 80(5):1467-1474. PubMed ID: 28429944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli.
    Kim DH; Kim BG; Lee Y; Ryu JY; Lim Y; Hur HG; Ahn JH
    J Biotechnol; 2005 Sep; 119(2):155-62. PubMed ID: 15961179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of cytosolic beta-glucosidase from pig liver and its reactivity towards flavonoid glycosides.
    Lambert N; Kroon PA; Faulds CB; Plumb GW; McLauchlan WR; Day AJ; Williamson G
    Biochim Biophys Acta; 1999 Nov; 1435(1-2):110-6. PubMed ID: 10561542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteolysis in tempeh-type products obtained with Rhizopus and Aspergillus strains from grass pea (Lathyrus sativus) seeds.
    Starzyńska-Janiszewska A; Stodolak B; Wikiera A
    Acta Sci Pol Technol Aliment; 2015; 14(2):125-132. PubMed ID: 28068010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of volatile compounds by Rhizopus oligosporus during soybean and barley tempeh fermentation.
    Feng XM; Larsen TO; Schnürer J
    Int J Food Microbiol; 2007 Jan; 113(2):133-41. PubMed ID: 16889859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cascade biocatalysis systems for bioactive naringenin glucosides and quercetin rhamnoside production from sucrose.
    Thapa SB; Pandey RP; Bashyal P; Yamaguchi T; Sohng JK
    Appl Microbiol Biotechnol; 2019 Oct; 103(19):7953-7969. PubMed ID: 31407037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.