These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 27960298)
21. Brettanomyces bruxellensis, a survivalist prepared for the wine apocalypse and other beverages. Smith BD; Divol B Food Microbiol; 2016 Oct; 59():161-75. PubMed ID: 27375257 [TBL] [Abstract][Full Text] [Related]
22. Hydroxycinnamic acid decarboxylase activity of Brettanomyces bruxellensis involved in volatile phenol production: relationship with cell viability. Laforgue R; Lonvaud-Funel A Food Microbiol; 2012 Dec; 32(2):230-4. PubMed ID: 22986185 [TBL] [Abstract][Full Text] [Related]
23. Partial vinylphenol reductase purification and characterization from Brettanomyces bruxellensis. Tchobanov I; Gal L; Guilloux-Benatier M; Remize F; Nardi T; Guzzo J; Serpaggi V; Alexandre H FEMS Microbiol Lett; 2008 Jul; 284(2):213-7. PubMed ID: 18576949 [TBL] [Abstract][Full Text] [Related]
24. Factors affecting the hydroxycinnamate decarboxylase/vinylphenol reductase activity of dekkera/brettanomyces: application for dekkera/brettanomyces control in red wine making. Benito S; Palomero F; Morata A; Calderón F; Suárez-Lepe JA J Food Sci; 2009; 74(1):M15-22. PubMed ID: 19200101 [TBL] [Abstract][Full Text] [Related]
25. Detection of Brettanomyces spp. in red wines using real-time PCR. Tofalo R; Schirone M; Corsetti A; Suzzi G J Food Sci; 2012 Sep; 77(9):M545-9. PubMed ID: 22908955 [TBL] [Abstract][Full Text] [Related]
26. Occurrence of Brettanomyces/Dekkera in Brazilian red wines and its correlation with ethylphenols. de Ávila LD; Ayub MA Braz J Microbiol; 2013; 44(1):81-7. PubMed ID: 24159287 [TBL] [Abstract][Full Text] [Related]
27. High pressure inactivation of Brettanomyces bruxellensis in red wine. van Wyk S; Silva FVM Food Microbiol; 2017 May; 63():199-204. PubMed ID: 28040169 [TBL] [Abstract][Full Text] [Related]
28. Interactive effects between total SO Edwards CG; Oswald TA Lett Appl Microbiol; 2018 Jan; 66(1):71-76. PubMed ID: 29080348 [TBL] [Abstract][Full Text] [Related]
29. Fermentation assays reveal differences in sugar and (off-) flavor metabolism across different Brettanomyces bruxellensis strains. Crauwels S; Van Opstaele F; Jaskula-Goiris B; Steensels J; Verreth C; Bosmans L; Paulussen C; Herrera-Malaver B; de Jonge R; De Clippeleer J; Marchal K; De Samblanx G; Willems KA; Verstrepen KJ; Aerts G; Lievens B FEMS Yeast Res; 2017 Jan; 17(1):. PubMed ID: 27956491 [TBL] [Abstract][Full Text] [Related]
30. The carbon consumption pattern of the spoilage yeast Brettanomyces bruxellensis in synthetic wine-like medium. Smith BD; Divol B Food Microbiol; 2018 Aug; 73():39-48. PubMed ID: 29526225 [TBL] [Abstract][Full Text] [Related]
31. The effect of sugar concentration and temperature on growth and volatile phenol production by Dekkera bruxellensis in wine. Barata A; Pagliara D; Piccininno T; Tarantino F; Ciardulli W; Malfeito-Ferreira M; Loureiro V FEMS Yeast Res; 2008 Nov; 8(7):1097-102. PubMed ID: 18637043 [TBL] [Abstract][Full Text] [Related]
32. Sorption of 4-ethylphenol and 4-ethylguaiacol by suberin from cork. Gallardo-Chacón JJ; Karbowiak T Food Chem; 2015 Aug; 181():222-6. PubMed ID: 25794743 [TBL] [Abstract][Full Text] [Related]
33. Influence of the matrix composition on the volatility and sensory perception of 4-ethylphenol and 4-ethylguaiacol in model wine solutions. Petrozziello M; Asproudi A; Guaita M; Borsa D; Motta S; Panero L; Bosso A Food Chem; 2014 Apr; 149():197-202. PubMed ID: 24295695 [TBL] [Abstract][Full Text] [Related]
34. Impact of Australian Dekkera bruxellensis strains grown under oxygen-limited conditions on model wine composition and aroma. Curtin CD; Langhans G; Henschke PA; Grbin PR Food Microbiol; 2013 Dec; 36(2):241-7. PubMed ID: 24010603 [TBL] [Abstract][Full Text] [Related]
35. A simple, cheap and reliable method for control of 4-ethylphenol and 4-ethylguaiacol in red wines. Screening of fining agents for reducing volatile phenols levels in red wines. Milheiro J; Filipe-Ribeiro L; Cosme F; Nunes FM J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jan; 1041-1042():183-190. PubMed ID: 27852533 [TBL] [Abstract][Full Text] [Related]
36. Impact of sulfur dioxide and temperature on culturability and viability of Brettanomyces bruxellensis in Wine. Zuehlke JM; Edwards CG J Food Prot; 2013 Dec; 76(12):2024-30. PubMed ID: 24290676 [TBL] [Abstract][Full Text] [Related]
37. A method for estimating Dekkera/Brettanomyces populations in wines. Benito S; Palomero F; Morata A; Calderón F; Suárez-Lepe JA J Appl Microbiol; 2009 May; 106(5):1743-51. PubMed ID: 19226397 [TBL] [Abstract][Full Text] [Related]
39. 4-ethylphenol and 4-ethylguaiacol in wines: estimating non-microbial sourced contributions and toxicological considerations. Rayne S; Eggers NJ J Environ Sci Health B; 2007 Nov; 42(8):887-97. PubMed ID: 17978957 [TBL] [Abstract][Full Text] [Related]
40. Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine: New insights on molecular basis of VBNC behaviour using a transcriptomic approach. Capozzi V; Di Toro MR; Grieco F; Michelotti V; Salma M; Lamontanara A; Russo P; Orrù L; Alexandre H; Spano G Food Microbiol; 2016 Oct; 59():196-204. PubMed ID: 27375260 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]