These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 27960306)
1. Quinone 1 e Huynh MT; Anson CW; Cavell AC; Stahl SS; Hammes-Schiffer S J Am Chem Soc; 2016 Dec; 138(49):15903-15910. PubMed ID: 27960306 [TBL] [Abstract][Full Text] [Related]
2. Substituent effect on a family of quinones in aprotic solvents: an experimental and theoretical approach. Frontana C; Vázquez-Mayagoitia A; Garza J; Vargas R; González I J Phys Chem A; 2006 Aug; 110(30):9411-9. PubMed ID: 16869691 [TBL] [Abstract][Full Text] [Related]
3. Accurate estimation of the one-electron reduction potentials of various substituted quinones in DMSO and CH3CN. Zhu XQ; Wang CH J Org Chem; 2010 Aug; 75(15):5037-47. PubMed ID: 20604547 [TBL] [Abstract][Full Text] [Related]
4. Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile. Namazian M; Coote ML J Phys Chem A; 2007 Aug; 111(30):7227-32. PubMed ID: 17625811 [TBL] [Abstract][Full Text] [Related]
5. Two-electron reduction of quinones by rat liver NAD(P)H:quinone oxidoreductase: quantitative structure-activity relationships. Anusevicius Z; Sarlauskas J; Cenas N Arch Biochem Biophys; 2002 Aug; 404(2):254-62. PubMed ID: 12147263 [TBL] [Abstract][Full Text] [Related]
6. Experimental and Theoretical Reduction Potentials of Some Biologically Active ortho-Carbonyl para-Quinones. Martínez-Cifuentes M; Salazar R; Ramírez-Rodríguez O; Weiss-López B; Araya-Maturana R Molecules; 2017 Apr; 22(4):. PubMed ID: 28375183 [TBL] [Abstract][Full Text] [Related]
7. Quantum chemical modeling of the reduction of quinones. Johnsson Wass JR; Ahlberg E; Panas I; Schiffrin DJ J Phys Chem A; 2006 Feb; 110(5):2005-20. PubMed ID: 16451036 [TBL] [Abstract][Full Text] [Related]
8. Influence of the protein environment on the redox potentials of flavodoxins from Clostridium beijerinckii. Ishikita H J Biol Chem; 2007 Aug; 282(35):25240-6. PubMed ID: 17602164 [TBL] [Abstract][Full Text] [Related]
9. The aprotic electrochemistry of quinones. Prince RC; Dutton PL; Gunner MR Biochim Biophys Acta Bioenerg; 2022 Aug; 1863(6):148558. PubMed ID: 35413248 [TBL] [Abstract][Full Text] [Related]
10. Tuning the redox chemistry of 4-benzoyl-N-methylpyridinium cations through para substitution. Hammett linear free energy relationships and the relative aptitude of the two-electron reduced forms for H-bonding. Leventis N; Rawaswdeh AM; Zhang G; Elder IA; Sotiriou-Leventis C J Org Chem; 2002 Oct; 67(21):7501-10. PubMed ID: 12375985 [TBL] [Abstract][Full Text] [Related]
11. Correlation between hydrogen bonding association constants in solution with quantum chemistry indexes: the case of successive association between reduced species of quinones and methanol. Galano A; Gómez M; González FJ; González I J Phys Chem A; 2012 Nov; 116(43):10638-45. PubMed ID: 23066656 [TBL] [Abstract][Full Text] [Related]
12. Terminal Electron-Proton Transfer Dynamics in the Quinone Reduction of Respiratory Complex I. Gamiz-Hernandez AP; Jussupow A; Johansson MP; Kaila VRI J Am Chem Soc; 2017 Nov; 139(45):16282-16288. PubMed ID: 29017321 [TBL] [Abstract][Full Text] [Related]
13. Redox potential of quinones in both electron transfer branches of photosystem I. Ishikita H; Knapp EW J Biol Chem; 2003 Dec; 278(52):52002-11. PubMed ID: 12972408 [TBL] [Abstract][Full Text] [Related]
14. One-step versus stepwise mechanism in protonated amino acid-promoted electron-transfer reduction of a quinone by electron donors and two-electron reduction by a dihydronicotinamide adenine dinucleotide analogue. Interplay between electron transfer and hydrogen bonding. Yuasa J; Yamada S; Fukuzumi S J Am Chem Soc; 2008 Apr; 130(17):5808-20. PubMed ID: 18386924 [TBL] [Abstract][Full Text] [Related]
15. Benchmarks of the density functional tight-binding method for redox, protonation and electronic properties of quinones. Kitheka MM; Redington M; Zhang J; Yao Y; Goyal P Phys Chem Chem Phys; 2022 Mar; 24(11):6742-6756. PubMed ID: 35234766 [TBL] [Abstract][Full Text] [Related]
16. Computation of the redox and protonation properties of quinones: towards the prediction of redox cycling natural products. Cape JL; Bowman MK; Kramer DM Phytochemistry; 2006 Aug; 67(16):1781-8. PubMed ID: 16872647 [TBL] [Abstract][Full Text] [Related]
17. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction. Horsefield R; Yankovskaya V; Sexton G; Whittingham W; Shiomi K; Omura S; Byrne B; Cecchini G; Iwata S J Biol Chem; 2006 Mar; 281(11):7309-16. PubMed ID: 16407191 [TBL] [Abstract][Full Text] [Related]
18. Molecular structure of substituted phenylamine alpha-OMe- and alpha-OH-p-benzoquinone derivatives. Synthesis and correlation of spectroscopic, electrochemical, and theoretical parameters. Aguilar-Martínez M; Bautista-Martínez JA; Macías-Ruvalcaba N; González I; Tovar E; Marín del Alizal T; Collera O; Cuevas G J Org Chem; 2001 Dec; 66(25):8349-63. PubMed ID: 11735513 [TBL] [Abstract][Full Text] [Related]
19. Control of quinone redox potentials in photosystem II: Electron transfer and photoprotection. Ishikita H; Knapp EW J Am Chem Soc; 2005 Oct; 127(42):14714-20. PubMed ID: 16231925 [TBL] [Abstract][Full Text] [Related]
20. Single protonation of the reduced quinone in respiratory complex I drives four-proton pumping. Stuchebrukhov AA; Hayashi T FEBS Lett; 2023 Jan; 597(2):237-245. PubMed ID: 36251339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]