BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27960320)

  • 1. Enabling Förster Resonance Energy Transfer from Large Nanocrystals through Energy Migration.
    Deng R; Wang J; Chen R; Huang W; Liu X
    J Am Chem Soc; 2016 Dec; 138(49):15972-15979. PubMed ID: 27960320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective turn-on and modulation of resonant energy transfer in single plasmonic hybrid nanostructures.
    Bujak Ł; Ishii T; Sharma DK; Hirata S; Vacha M
    Nanoscale; 2017 Jan; 9(4):1511-1519. PubMed ID: 28067372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates.
    Ghenuche P; Mivelle M; de Torres J; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Wenger J
    Nano Lett; 2015 Sep; 15(9):6193-201. PubMed ID: 26237534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Förster Resonance Energy Transfer on Single Metal Particle. 2. Dependence on Donor-Acceptor Separation Distance, Particle Size, and Distance from Metal Surface.
    Zhang J; Fu Y; Chowdhury MH; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2007 Aug; 111(32):11784-11792. PubMed ID: 19890406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle.
    Zhang J; Fu Y; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2007 Jan; 111(1):50-56. PubMed ID: 19079780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saturated Förster resonance energy transfer microscopy with a stimulated emission depletion beam: a pathway toward single-molecule resolution in far-field bioimaging.
    Deng S; Chen J; Huang Q; Fan C; Cheng Y
    Opt Lett; 2010 Dec; 35(23):3862-4. PubMed ID: 21124546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states.
    Gonzaga-Galeana JA; Zurita-Sánchez JR
    J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lanthanides and quantum dots as Förster resonance energy transfer agents for diagnostics and cellular imaging.
    Geißler D; Linden S; Liermann K; Wegner KD; Charbonnière LJ; Hildebrandt N
    Inorg Chem; 2014 Feb; 53(4):1824-38. PubMed ID: 24099579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging Lanthanide to Quantum Dot Energy Transfer with a Short-Lifetime Organic Dye.
    Díaz SA; Lasarte Aragonés G; Buckhout-White S; Qiu X; Oh E; Susumu K; Melinger JS; Huston AL; Hildebrandt N; Medintz IL
    J Phys Chem Lett; 2017 May; 8(10):2182-2188. PubMed ID: 28467088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Transfer from Perovskite Nanocrystals to Dye Molecules Does Not Occur by FRET.
    Hofmann FJ; Bodnarchuk MI; Dirin DN; Vogelsang J; Kovalenko MV; Lupton JM
    Nano Lett; 2019 Dec; 19(12):8896-8902. PubMed ID: 31646869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures.
    Ghenuche P; de Torres J; Moparthi SB; Grigoriev V; Wenger J
    Nano Lett; 2014 Aug; 14(8):4707-14. PubMed ID: 25020141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond.
    Ungvári T; Gogolák P; Bagdány M; Damjanovich L; Bene L
    Biochim Biophys Acta; 2016 Apr; 1863(4):703-16. PubMed ID: 26854711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transfer from an individual silica nanoparticle to graphene quantum dots and resulting enhancement of photodetector responsivity.
    Kim S; Shin DH; Kim J; Jang CW; Kang SS; Kim JM; Kim JH; Lee DH; Kim JH; Choi SH; Hwang SW
    Sci Rep; 2016 Jun; 6():27145. PubMed ID: 27250343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Förster Resonance Energy Transfer and the Local Optical Density of States in Plasmonic Nanogaps.
    Hamza AO; Viscomi FN; Bouillard JG; Adawi AM
    J Phys Chem Lett; 2021 Feb; 12(5):1507-1513. PubMed ID: 33534597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.