BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 27960324)

  • 1. Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes.
    Liu Y; Xiao H; Goddard WA
    J Am Chem Soc; 2016 Dec; 138(49):15853-15856. PubMed ID: 27960324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating the Schottky barrier of MXenes/2D SiC contacts
    Huang L; Deng X; Pan S; Cui W
    Phys Chem Chem Phys; 2022 Sep; 24(35):20837-20847. PubMed ID: 36040139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Schottky barriers for monolayer GaSe FETs by exploiting a weak Fermi level pinning effect.
    Liu N; Zhou S; Gao N; Zhao J
    Phys Chem Chem Phys; 2018 Aug; 20(33):21732-21738. PubMed ID: 30105339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized MXenes as ideal electrodes for Janus MoSSe.
    Wang Y; Wei W; Huang B; Dai Y
    Phys Chem Chem Phys; 2018 Dec; 21(1):70-76. PubMed ID: 30515489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier.
    Liu Y; Stradins P; Wei SH
    Sci Adv; 2016 Apr; 2(4):e1600069. PubMed ID: 27152360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Computational Screening of All-MXene Metal-Semiconductor Junctions for Schottky-Barrier-Free Contacts with Weak Fermi-Level Pinning.
    Yan J; Cao D; Li M; Luo Q; Chen X; Su L; Shu H
    Small; 2023 Nov; 19(44):e2303675. PubMed ID: 37381648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-van-der-Waals Barrier-Free Contacts for High-Mobility Transistors.
    Zhang X; Yu H; Tang W; Wei X; Gao L; Hong M; Liao Q; Kang Z; Zhang Z; Zhang Y
    Adv Mater; 2022 Aug; 34(34):e2109521. PubMed ID: 35165952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressed Fermi Level Pinning and Wide-Range Tunable Schottky Barrier in CrX
    Hu Y; Hu X; Wang Y; Lu C; Krasheninnikov AV; Chen Z; Sun L
    J Phys Chem Lett; 2023 Mar; 14(11):2807-2815. PubMed ID: 36912604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2D SnSe-based vdW heterojunctions: tuning the Schottky barrier by reducing Fermi level pinning.
    Zhou W; Guo Y; Liu J; Wang FQ; Li X; Wang Q
    Nanoscale; 2018 Jul; 10(28):13767-13772. PubMed ID: 29995035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermi-Level Pinning-Free WSe
    Jang J; Ra HS; Ahn J; Kim TW; Song SH; Park S; Taniguch T; Watanabe K; Lee K; Hwang DK
    Adv Mater; 2022 May; 34(19):e2109899. PubMed ID: 35306686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions.
    Liu Y; Guo J; Zhu E; Liao L; Lee SJ; Ding M; Shakir I; Gambin V; Huang Y; Duan X
    Nature; 2018 May; 557(7707):696-700. PubMed ID: 29769729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-bonding enables two-dimensional metal/semiconductor tunable contacts approaching the quantum limit and the modified Schottky-Mott limit simultaneously.
    Liu D; Liu Z; Zhu J; Zhang M
    Mater Horiz; 2023 Nov; 10(12):5621-5632. PubMed ID: 37752785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TiS
    Liu J; Guo Y; Wang FQ; Wang Q
    Nanoscale; 2018 Jan; 10(2):807-815. PubMed ID: 29260814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical Contacts in Monolayer Arsenene Devices.
    Wang Y; Ye M; Weng M; Li J; Zhang X; Zhang H; Guo Y; Pan Y; Xiao L; Liu J; Pan F; Lu J
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29273-29284. PubMed ID: 28783298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecule-Upgraded van der Waals Contacts for Schottky-Barrier-Free Electronics.
    Zhang X; Kang Z; Gao L; Liu B; Yu H; Liao Q; Zhang Z; Zhang Y
    Adv Mater; 2021 Nov; 33(45):e2104935. PubMed ID: 34569109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of spintronic and electronic properties of bimetallic and vacancy-ordered vanadium carbide MXenes via surface functionalization.
    Li S; He J; Nachtigall P; Grajciar L; Brivio F
    Phys Chem Chem Phys; 2019 Dec; 21(46):25802-25808. PubMed ID: 31728461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. van der Waals Stacking Induced Transition from Schottky to Ohmic Contacts: 2D Metals on Multilayer InSe.
    Shen T; Ren JC; Liu X; Li S; Liu W
    J Am Chem Soc; 2019 Feb; 141(7):3110-3115. PubMed ID: 30688068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forming Stable van der Waals Contacts between Metals and 2D Semiconductors.
    Kwon G; Kim HS; Jeong K; Kim M; Nam GH; Park H; Yoo K; Cho MH
    Small Methods; 2023 Sep; 7(9):e2300376. PubMed ID: 37291738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Injection Barriers for Ambipolar 2D Semiconductors via Quasi-van der Waals Contacts.
    Wang J; Wang F; Wang Z; Cheng R; Yin L; Wen Y; Zhang Y; Li N; Zhan X; Xiao X; Feng L; He J
    Adv Sci (Weinh); 2019 Jun; 6(11):1801841. PubMed ID: 31179206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering van der Waals Contacts by Interlayer Dipoles.
    Zhou Z; Lin JF; Zeng Z; Ma X; Liang L; Li Y; Zhao Z; Mei Z; Yang H; Li Q; Wu J; Fan S; Chen X; Xia TL; Wei Y
    Nano Lett; 2024 Apr; 24(15):4408-4414. PubMed ID: 38567928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.