These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
499 related articles for article (PubMed ID: 27960357)
21. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries. Hou Y; Li J; Gao X; Wen Z; Yuan C; Chen J Nanoscale; 2016 Apr; 8(15):8228-35. PubMed ID: 27029963 [TBL] [Abstract][Full Text] [Related]
22. Dispersion-Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries. Zhang Y; Huang Y; Yang G; Bu F; Li K; Shakir I; Xu Y ACS Appl Mater Interfaces; 2017 May; 9(18):15549-15556. PubMed ID: 28425698 [TBL] [Abstract][Full Text] [Related]
23. Synergetic Effects of Multifunctional Composites with More Efficient Polysulfide Immobilization and Ultrahigh Sulfur Content in Lithium-Sulfur Batteries. Chen M; Jiang S; Huang C; Xia J; Wang X; Xiang K; Zeng P; Zhang Y; Jamil S ACS Appl Mater Interfaces; 2018 Apr; 10(16):13562-13572. PubMed ID: 29616796 [TBL] [Abstract][Full Text] [Related]
24. High-Performance All-Inorganic Solid-State Sodium-Sulfur Battery. Yue J; Han F; Fan X; Zhu X; Ma Z; Yang J; Wang C ACS Nano; 2017 May; 11(5):4885-4891. PubMed ID: 28459546 [TBL] [Abstract][Full Text] [Related]
25. Three-Dimensionally Hierarchical Ni/Ni Li Z; Zhang S; Zhang J; Xu M; Tatara R; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2017 Nov; 9(44):38477-38485. PubMed ID: 29035508 [TBL] [Abstract][Full Text] [Related]
26. Hierarchically Porous SnO Wei W; Li J; Wang Q; Liu D; Niu J; Liu P ACS Appl Mater Interfaces; 2020 Feb; 12(5):6362-6370. PubMed ID: 31913593 [TBL] [Abstract][Full Text] [Related]
27. Three-Dimensionally Hierarchical Graphene Based Aerogel Encapsulated Sulfur as Cathode for Lithium/Sulfur Batteries. Li H; Sun L; Wang Z; Zhang Y; Tan T; Wang G; Bakenov Z Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29373525 [TBL] [Abstract][Full Text] [Related]
29. Electrocatalysis of polysulfide conversion by conductive RuO Wang R; Wang K; Gao S; Jiang M; Han J; Zhou M; Cheng S; Jiang K Nanoscale; 2018 Sep; 10(35):16730-16737. PubMed ID: 30156247 [TBL] [Abstract][Full Text] [Related]
30. CeF Deng N; Ju J; Yan J; Zhou X; Qin Q; Zhang K; Liang Y; Li Q; Kang W; Cheng B ACS Appl Mater Interfaces; 2018 Apr; 10(15):12626-12638. PubMed ID: 29582987 [TBL] [Abstract][Full Text] [Related]
31. Dual Core-Shell-Structured S@C@MnO Ni L; Zhao G; Yang G; Niu G; Chen M; Diao G ACS Appl Mater Interfaces; 2017 Oct; 9(40):34793-34803. PubMed ID: 28817251 [TBL] [Abstract][Full Text] [Related]
32. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Sun Z; Zhang J; Yin L; Hu G; Fang R; Cheng HM; Li F Nat Commun; 2017 Mar; 8():14627. PubMed ID: 28256504 [TBL] [Abstract][Full Text] [Related]
33. Cai L; Wan H; Zhang Q; Mwizerwa JP; Xu X; Yao X ACS Appl Mater Interfaces; 2020 Jul; 12(30):33810-33816. PubMed ID: 32662624 [TBL] [Abstract][Full Text] [Related]
34. Flexible and Hierarchically Structured Sulfur Composite Cathode Based on the Carbonized Textile for High-Performance Li-S Batteries. Gao P; Xu S; Chen Z; Huang X; Bao Z; Lao C; Wu G; Mei Y ACS Appl Mater Interfaces; 2018 Jan; 10(4):3938-3947. PubMed ID: 29309733 [TBL] [Abstract][Full Text] [Related]
35. Bottom-up, hard template and scalable approaches toward designing nanostructured Li2S for high performance lithium sulfur batteries. Chen L; Liu Y; Dietz-Rago N; Shaw LL Nanoscale; 2015 Nov; 7(43):18071-80. PubMed ID: 26420373 [TBL] [Abstract][Full Text] [Related]
36. Flexible Cathode Materials Enabled by a Multifunctional Covalent Organic Gel for Lithium-Sulfur Batteries with High Areal Capacities. Pan H; Cheng Z; Zhong H; Wang R; Li X ACS Appl Mater Interfaces; 2019 Feb; 11(8):8032-8039. PubMed ID: 30702847 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889 [TBL] [Abstract][Full Text] [Related]
38. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. Xu J; Shui J; Wang J; Wang M; Liu HK; Dou SX; Jeon IY; Seo JM; Baek JB; Dai L ACS Nano; 2014 Oct; 8(10):10920-30. PubMed ID: 25290080 [TBL] [Abstract][Full Text] [Related]
39. Encapsulation of S/SWNT with PANI web for enhanced rate and cycle performance in lithium sulfur batteries. Kim JH; Fu K; Choi J; Kil K; Kim J; Han X; Hu L; Paik U Sci Rep; 2015 Mar; 5():8946. PubMed ID: 25752298 [TBL] [Abstract][Full Text] [Related]
40. High-Rate and Long-Term Cycle Stability of Li-S Batteries Enabled by Li Wang X; Bi X; Wang S; Zhang Y; Du H; Lu J ACS Appl Mater Interfaces; 2018 May; 10(19):16552-16560. PubMed ID: 29671567 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]