These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 27960417)

  • 41. Constructing Robust Cathode/Electrolyte Interphase for Ultrastable 4.6 V LiCoO
    Ye B; Cai M; Xie M; Dong H; Dong W; Huang F
    ACS Appl Mater Interfaces; 2022 May; 14(17):19561-19568. PubMed ID: 35442616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved High Temperature Performance of a Spinel LiNi
    Dong H; Zhang Y; Zhang S; Tang P; Xiao X; Ma M; Zhang H; Yin Y; Wang D; Yang S
    ACS Omega; 2019 Jan; 4(1):185-194. PubMed ID: 31459322
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoscale-engineered LiCoO
    Jayasree SS; Nair S; Santhanagopalan D
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35349990
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemical performance of ZnO-coated Li
    Wang Y; Ren Y; Dai X; Yan X; Huang B; Li J
    R Soc Open Sci; 2018 Oct; 5(10):180762. PubMed ID: 30473827
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced Electrochemical Performance of Rare-Earth Metal-Ion-Doped Nanocrystalline Li
    Lakshmi-Narayana A; Dhananjaya M; Julien CM; Joo SW; Ramana CV
    ACS Appl Mater Interfaces; 2023 May; 15(17):20925-20945. PubMed ID: 37067333
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li||LiCoO
    Ren X; Zhang X; Shadike Z; Zou L; Jia H; Cao X; Engelhard MH; Matthews BE; Wang C; Arey BW; Yang XQ; Liu J; Zhang JG; Xu W
    Adv Mater; 2020 Dec; 32(49):e2004898. PubMed ID: 33150628
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Cycling and Rate Capability by Epitaxially Matched Conductive Cubic TiO Coating on LiCoO
    Singh DP; Birkhölzer YA; Cunha DM; Dubbelink T; Huang S; Hendriks TA; Lievens C; Huijben M
    ACS Appl Energy Mater; 2021 May; 4(5):5024-5033. PubMed ID: 34056556
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancing the Electrochemical Performance of LiNi
    Chen Z; Wang Z; Kim GT; Yang G; Wang H; Wang X; Huang Y; Passerini S; Shen Z
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26994-27003. PubMed ID: 31290644
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries.
    Li J; Ji Y; Song H; Chen S; Ding S; Zhang B; Yang L; Song Y; Pan F
    Nanomicro Lett; 2022 Sep; 14(1):191. PubMed ID: 36121521
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancing Electrochemical Performances of Rechargeable Lithium-Ion Batteries via Cathode Interfacial Engineering.
    Kum LW; Gogia A; Vallo N; Singh DK; Kumar J
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4100-4110. PubMed ID: 35015517
    [TBL] [Abstract][Full Text] [Related]  

  • 51. LiNi(0.5)Mn(1.5)O4 high-voltage cathode coated with Li4Ti5O12: a hard X-ray photoelectron spectroscopy (HAXPES) study.
    Sachs M; Gellert M; Chen M; Drescher HJ; Kachel SR; Zhou H; Zugermeier M; Gorgoi M; Roling B; Gottfried JM
    Phys Chem Chem Phys; 2015 Dec; 17(47):31790-800. PubMed ID: 26563554
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving the electrochemical properties of LiNi(0.5)Co(0.2)Mn(0.3)O2 at 4.6 V cutoff potential by surface coating with Li2TiO3 for lithium-ion batteries.
    Wang J; Yu Y; Li B; Fu T; Xie D; Cai J; Zhao J
    Phys Chem Chem Phys; 2015 Dec; 17(47):32033-43. PubMed ID: 26573985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lithium titanate epitaxial coating on spinel lithium manganese oxide surface for improving the performance of lithium storage capability.
    Li J; Zhu Y; Wang L; Cao C
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18742-50. PubMed ID: 25322171
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Understanding the Stabilizing Effects of Nanoscale Metal Oxide and Li-Metal Oxide Coatings on Lithium-Ion Battery Positive Electrode Materials.
    Ahaliabadeh Z; Miikkulainen V; Mäntymäki M; Mousavihashemi S; Lahtinen J; Lide Y; Jiang H; Mizohata K; Kankaanpää T; Kallio T
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42773-42790. PubMed ID: 34491036
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving the Stability of High-Voltage Lithium Cobalt Oxide with a Multifunctional Electrolyte Additive: Interfacial Analyses.
    Liao XQ; Li F; Zhang CM; Yin ZL; Liu GC; Yu JG
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33671087
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced Interfacial Kinetics and High Rate Performance of LiCoO
    Xiao B; Tang Q; Dai X; Wu F; Chen H; Li J; Mai Y; Gu Y
    ACS Omega; 2022 Sep; 7(35):31597-31606. PubMed ID: 36092563
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries.
    Medina PA; Zheng H; Fahlman BD; Annamalai P; Swartbooi A; le Roux L; Mathe MK
    Springerplus; 2015; 4():643. PubMed ID: 26543777
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanoscale control and tri-element co-doping of 4.6 V LiCoO
    Wang X; Fang Z; Hu X; Fu B; Feng T; Li T; Wu M
    Dalton Trans; 2023 Mar; 52(13):3981-3989. PubMed ID: 36883845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facile conversion of commercial coarse-type LiCoO2 to nanocomposite-separated nanolayer architectures as a way for electrode performance enhancement.
    Zhao Y; Sha Y; Lin Q; Zhong Y; Tade MO; Shao Z
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1787-94. PubMed ID: 25561439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tuning Interphase Chemistry to Stabilize High-Voltage LiCoO
    Liu J; Wang J; Ni Y; Liu J; Zhang Y; Lu Y; Yan Z; Zhang K; Zhao Q; Cheng F; Chen J
    Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202207000. PubMed ID: 35657806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.