These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27960454)

  • 1. Tandem Core-Shell Si-Ta
    Narkeviciute I; Chakthranont P; Mackus AJ; Hahn C; Pinaud BA; Bent SF; Jaramillo TF
    Nano Lett; 2016 Dec; 16(12):7565-7572. PubMed ID: 27960454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured TaON/Ta
    Pei L; Wang H; Wang X; Xu Z; Yan S; Zou Z
    Dalton Trans; 2018 Jul; 47(27):8949-8955. PubMed ID: 29922786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thin film transfer for the fabrication of tantalum nitride photoelectrodes with controllable layered structures for water splitting.
    Wang C; Hisatomi T; Minegishi T; Nakabayashi M; Shibata N; Katayama M; Domen K
    Chem Sci; 2016 Sep; 7(9):5821-5826. PubMed ID: 30034721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface defect passivation of Ta
    Li F; Jian J; Xu Y; Liu W; Ye Q; Feng F; Li C; Jia L; Wang H
    J Chem Phys; 2020 Jul; 153(2):024705. PubMed ID: 32668911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Deposition of Crystalline Ta
    Hajibabaei H; Little DJ; Pandey A; Wang D; Mi Z; Hamann TW
    ACS Appl Mater Interfaces; 2019 May; 11(17):15457-15466. PubMed ID: 30964262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Interface-cascading Silicon Photoanode with Strengthened Built-in Electric Field and Enriched Surface Oxygen Vacancies for Efficient Photoelectrochemical Water Splitting.
    Yin Z; Zhang K; Shi Y; Wang Y; Shen S
    Chemistry; 2024 Mar; 30(15):e202303895. PubMed ID: 38198245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximizing Oxygen Evolution Performance on a Transparent NiFeO
    Kawase Y; Higashi T; Katayama M; Domen K; Takanabe K
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16317-16325. PubMed ID: 33797878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface engineering of Ta
    Fu J; Fan Z; Nakabayashi M; Ju H; Pastukhova N; Xiao Y; Feng C; Shibata N; Domen K; Li Y
    Nat Commun; 2022 Feb; 13(1):729. PubMed ID: 35132086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Nanostructured Ta
    Abdel Haleem A; Perumandla N; Naruta Y
    ACS Omega; 2019 Apr; 4(4):7815-7821. PubMed ID: 31459870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physicochemical insights into semiconductor properties of a semitransparent tantalum nitride photoanode for solar water splitting.
    Higashi T; Nishiyama H; Pihosh Y; Wakishima K; Kawase Y; Sasaki Y; Nagaoka A; Yoshino K; Takanabe K; Domen K
    Phys Chem Chem Phys; 2023 Aug; 25(30):20737-20748. PubMed ID: 37490272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
    Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W
    Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bridging the transport pathway of charge carriers in a Ta3N5 nanotube array photoanode for solar water splitting.
    Zhang P; Wang T; Zhang J; Chang X; Gong J
    Nanoscale; 2015 Aug; 7(31):13153-8. PubMed ID: 26061973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type-II ZnO/ZnS core-shell nanowires: Earth-abundant photoanode for solar-driven photoelectrochemical water splitting.
    Hassan MA; Johar MA; Waseem A; Bagal IV; Ha JS; Ryu SW
    Opt Express; 2019 Feb; 27(4):A184-A196. PubMed ID: 30876134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell photoanode developed by atomic layer deposition of Bi₂O₃ on Si nanowires for enhanced photoelectrochemical water splitting.
    Weng B; Xu F; Xu J
    Nanotechnology; 2014 Nov; 25(45):455402. PubMed ID: 25338216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoporous Ultrathin In
    Yan G; Dong Y; Wu T; Xing S; Wang X
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52912-52920. PubMed ID: 34709787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mg-Zr Cosubstituted Ta3N5 Photoanode for Lower-Onset-Potential Solar-Driven Photoelectrochemical Water Splitting.
    Seo J; Takata T; Nakabayashi M; Hisatomi T; Shibata N; Minegishi T; Domen K
    J Am Chem Soc; 2015 Oct; 137(40):12780-3. PubMed ID: 26426439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting.
    Li Y; Takata T; Cha D; Takanabe K; Minegishi T; Kubota J; Domen K
    Adv Mater; 2013 Jan; 25(1):125-31. PubMed ID: 22987610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of Surface Oxidation on Ta
    Li K; Miao B; Fa W; Chen R; Jin J; Bevan KH; Wang D
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17420-17428. PubMed ID: 33835772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Design of Functional Nano-Coatings: Reduction of Loss Mechanisms in Photoelectrochemical Water Splitting.
    Landsmann S; Surace Y; Trottmann M; Dilger S; Weidenkaff A; Pokrant S
    ACS Appl Mater Interfaces; 2016 May; 8(19):12149-57. PubMed ID: 27159411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering band structuring
    Wang X; Zhang H; Feng C; Wang Y
    Chem Sci; 2024 Jan; 15(3):896-905. PubMed ID: 38239699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.