These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 27960457)
1. Parallel Nanoshaping of Brittle Semiconductor Nanowires for Strained Electronics. Hu Y; Li J; Tian J; Xuan Y; Deng B; McNear KL; Lim DG; Chen Y; Yang C; Cheng GJ Nano Lett; 2016 Dec; 16(12):7536-7544. PubMed ID: 27960457 [TBL] [Abstract][Full Text] [Related]
2. Laser shock-based platform for controllable forming of nanowires. Li J; Liao Y; Suslov S; Cheng GJ Nano Lett; 2012 Jun; 12(6):3224-30. PubMed ID: 22594665 [TBL] [Abstract][Full Text] [Related]
3. Shape-Controlled Deterministic Assembly of Nanowires. Zhao Y; Yao J; Xu L; Mankin MN; Zhu Y; Wu H; Mai L; Zhang Q; Lieber CM Nano Lett; 2016 Apr; 16(4):2644-50. PubMed ID: 26999059 [TBL] [Abstract][Full Text] [Related]
4. Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5%. Minamisawa RA; Süess MJ; Spolenak R; Faist J; David C; Gobrecht J; Bourdelle KK; Sigg H Nat Commun; 2012; 3():1096. PubMed ID: 23033072 [TBL] [Abstract][Full Text] [Related]
5. Nanoscale strainability of graphene by laser shock-induced three-dimensional shaping. Li J; Chung TF; Chen YP; Cheng GJ Nano Lett; 2012 Sep; 12(9):4577-83. PubMed ID: 22876850 [TBL] [Abstract][Full Text] [Related]
6. Asymmetric 3D Elastic-Plastic Strain-Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking. Motlag M; Kumar P; Hu KY; Jin S; Li J; Shao J; Yi X; Lin YH; Walrath JC; Tong L; Huang X; Goldman RS; Ye L; Cheng GJ Adv Mater; 2019 May; 31(19):e1900597. PubMed ID: 30924972 [TBL] [Abstract][Full Text] [Related]
7. Approaching the ideal elastic strain limit in silicon nanowires. Zhang H; Tersoff J; Xu S; Chen H; Zhang Q; Zhang K; Yang Y; Lee CS; Tu KN; Li J; Lu Y Sci Adv; 2016 Aug; 2(8):e1501382. PubMed ID: 27540586 [TBL] [Abstract][Full Text] [Related]
8. Strain-induced large exciton energy shifts in buckled CdS nanowires. Sun L; Kim DH; Oh KH; Agarwal R Nano Lett; 2013 Aug; 13(8):3836-42. PubMed ID: 23899018 [TBL] [Abstract][Full Text] [Related]
9. Silver nanowires-based signal amplification for CdSe quantum dots electrochemiluminescence immunoassay. Huang T; Meng Q; Jie G Biosens Bioelectron; 2015 Apr; 66():84-8. PubMed ID: 25460886 [TBL] [Abstract][Full Text] [Related]
10. Tuning the electro-optical properties of germanium nanowires by tensile strain. Greil J; Lugstein A; Zeiner C; Strasser G; Bertagnolli E Nano Lett; 2012 Dec; 12(12):6230-4. PubMed ID: 23146072 [TBL] [Abstract][Full Text] [Related]
11. Preparation of protein-like silver-cysteine hybrid nanowires and application in ultrasensitive immunoassay of cancer biomarker. Chen W; Zheng L; Wang M; Chi Y; Chen G Anal Chem; 2013 Oct; 85(20):9655-63. PubMed ID: 24063650 [TBL] [Abstract][Full Text] [Related]
12. Laser-Shock-Induced Nanoscale Kink-Bands in WSe Motlag M; Hu Y; Tong L; Huang X; Ye L; Cheng GJ ACS Nano; 2019 Sep; 13(9):10587-10595. PubMed ID: 31424915 [TBL] [Abstract][Full Text] [Related]
13. Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors. Weber WM; Mikolajick T Rep Prog Phys; 2017 Jun; 80(6):066502. PubMed ID: 28054936 [TBL] [Abstract][Full Text] [Related]
14. Deformable Organic Nanowire Field-Effect Transistors. Lee Y; Oh JY; Kim TR; Gu X; Kim Y; Wang GN; Wu HC; Pfattner R; To JWF; Katsumata T; Son D; Kang J; Matthews JR; Niu W; He M; Sinclair R; Cui Y; Tok JB; Lee TW; Bao Z Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315845 [TBL] [Abstract][Full Text] [Related]
15. Parallel Nanoimprint Forming of One-Dimensional Chiral Semiconductor for Strain-Engineered Optical Properties. Wang Y; Jin S; Wang Q; Wu M; Yao S; Liao P; Kim MJ; Cheng GJ; Wu W Nanomicro Lett; 2020 Aug; 12(1):160. PubMed ID: 34138155 [TBL] [Abstract][Full Text] [Related]
16. Large-Scale Ultrafast Strain Engineering of CVD-Grown Two-Dimensional Materials on Strain Self-Limited Deformable Nanostructures toward Enhanced Field-Effect Transistors. Huang Z; Lu N; Wang Z; Xu S; Guan J; Hu Y Nano Lett; 2022 Sep; 22(18):7734-7741. PubMed ID: 35951414 [TBL] [Abstract][Full Text] [Related]
17. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. Wang L; Zheng K; Zhang Z; Han X Nano Lett; 2011 Jun; 11(6):2382-5. PubMed ID: 21545162 [TBL] [Abstract][Full Text] [Related]
18. Reversible strain-induced electron-hole recombination in silicon nanowires observed with femtosecond pump-probe microscopy. Grumstrup EM; Gabriel MM; Pinion CW; Parker JK; Cahoon JF; Papanikolas JM Nano Lett; 2014 Nov; 14(11):6287-92. PubMed ID: 25259929 [TBL] [Abstract][Full Text] [Related]
19. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. Liu X; Long YZ; Liao L; Duan X; Fan Z ACS Nano; 2012 Mar; 6(3):1888-900. PubMed ID: 22364279 [TBL] [Abstract][Full Text] [Related]
20. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Han XD; Zhang YF; Zheng K; Zhang XN; Zhang Z; Hao YJ; Guo XY; Yuan J; Wang ZL Nano Lett; 2007 Feb; 7(2):452-7. PubMed ID: 17298014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]