BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27960522)

  • 21. Plasmon-exciton hybridization in ZnO quantum-well Al nanodisc heterostructures.
    Lawrie BJ; Kim KW; Norton DP; Haglund RF
    Nano Lett; 2012 Dec; 12(12):6152-7. PubMed ID: 23171302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrically Tunable Exciton-Plasmon Coupling in a WSe
    Dibos AM; Zhou Y; Jauregui LA; Scuri G; Wild DS; High AA; Taniguchi T; Watanabe K; Lukin MD; Kim P; Park H
    Nano Lett; 2019 Jun; 19(6):3543-3547. PubMed ID: 31117747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons.
    Wersäll M; Cuadra J; Antosiewicz TJ; Balci S; Shegai T
    Nano Lett; 2017 Jan; 17(1):551-558. PubMed ID: 28005384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides.
    Chen J; Li Z; Yue S; Gong Q
    Opt Express; 2009 Dec; 17(26):23603-9. PubMed ID: 20052069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS
    Wang M; Krasnok A; Zhang T; Scarabelli L; Liu H; Wu Z; Liz-Marzán LM; Terrones M; Alù A; Zheng Y
    Adv Mater; 2018 May; 30(22):e1705779. PubMed ID: 29659088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons.
    Bitton O; Gupta SN; Houben L; Kvapil M; Křápek V; Šikola T; Haran G
    Nat Commun; 2020 Jan; 11(1):487. PubMed ID: 31980624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Colloidal Assembly of Au-Quantum Dot-Au Sandwiched Nanostructures with Strong Plasmon-Exciton Coupling.
    Luo Y; Wang Y; Liu M; Zhu H; Chen O; Zou S; Zhao J
    J Phys Chem Lett; 2020 Apr; 11(7):2449-2456. PubMed ID: 32155339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates.
    Melnikau D; Savateeva D; Susha A; Rogach AL; Rakovich YP
    Nanoscale Res Lett; 2013 Mar; 8(1):134. PubMed ID: 23522305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong plasmon-exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe
    Yan X; Wei H
    Nanoscale; 2020 May; 12(17):9708-9716. PubMed ID: 32323700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays.
    Wang H; Toma A; Wang HY; Bozzola A; Miele E; Haddadpour A; Veronis G; De Angelis F; Wang L; Chen QD; Xu HL; Sun HB; Zaccaria RP
    Nanoscale; 2016 Jul; 8(27):13445-53. PubMed ID: 27350590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions.
    Qin J; Chen YH; Zhang Z; Zhang Y; Blaikie RJ; Ding B; Qiu M
    Phys Rev Lett; 2020 Feb; 124(6):063902. PubMed ID: 32109119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Angle-independent plasmonic substrates for multi-mode vibrational strong coupling with molecular thin films.
    Brawley ZT; Storm SD; Contreras Mora DA; Pelton M; Sheldon M
    J Chem Phys; 2021 Mar; 154(10):104305. PubMed ID: 33722049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the coherent interaction in a hybrid system of hollow gold nanoprisms and cyanine dye J-aggregates: role of plasmon-hybridization mediated local electric-field enhancement.
    Das K; Hazra B; Chandra M
    Phys Chem Chem Phys; 2017 Oct; 19(41):27997-28005. PubMed ID: 29028057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning the Plexcitonic Optical Chirality Using Discrete Structurally Chiral Plasmonic Nanoparticles.
    Cheng Q; Yang J; Sun L; Liu C; Yang G; Tao Y; Sun X; Zhang B; Xu H; Zhang Q
    Nano Lett; 2023 Dec; 23(23):11376-11384. PubMed ID: 38038244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optically induced crossover from weak to strong coupling regime between surface plasmon polaritons and photochromic molecules.
    Asamoah BO; Mohamed S; Datta S; Karvinen P; Rekola H; Priimagi A; Hakala TK
    Opt Express; 2020 Aug; 28(18):26509-26518. PubMed ID: 32906923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrastrong plasmon-exciton coupling in metal nanoprisms with J-aggregates.
    Balci S
    Opt Lett; 2013 Nov; 38(21):4498-501. PubMed ID: 24177129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aluminum Nanoantenna Complexes for Strong Coupling between Excitons and Localized Surface Plasmons.
    Eizner E; Avayu O; Ditcovski R; Ellenbogen T
    Nano Lett; 2015 Sep; 15(9):6215-21. PubMed ID: 26258257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How to Obtain the Correct Rabi Splitting in a Subwavelength Interacting System.
    Du R; Hu H; Fu T; Shi Z; Zhang S; Xu H
    Nano Lett; 2023 Jan; 23(2):444-450. PubMed ID: 36595223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exciton-Plasmon Energy Exchange Drives the Transition to a Strong Coupling Regime.
    Shahbazyan TV
    Nano Lett; 2019 May; 19(5):3273-3279. PubMed ID: 30973738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.