These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 27962)

  • 1. Behavior of extracellular H+ and K+ activities during functional hyperemia of microcirculation in the brain cortex.
    Leniger-Follert E; Urbanics R; Lübbers W
    Adv Neurol; 1978; 20():97-101. PubMed ID: 27962
    [No Abstract]   [Full Text] [Related]  

  • 2. Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex.
    Urbanics R; Leniger-Follert E; Lübbers DW
    Pflugers Arch; 1978 Dec; 378(1):47-53. PubMed ID: 32522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvessel reactions and NAD-NADH changes in cat brain cortex during cortical stimulation under normo- and hypercapnic conditions.
    Gyulai L; Dora E; Eke A; Kovach AG
    Bibl Anat; 1977; (15 Pt 1):183-6. PubMed ID: 202240
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation of microflow and behaviour of local tissue Po2 during activation and anoxia of the brain cortex.
    Leniger-Follert E; Lübbers DW
    Bibl Anat; 1977; (15 Pt 1):345-9. PubMed ID: 23095
    [No Abstract]   [Full Text] [Related]  

  • 5. Evoked and spontaneous extracellular potassium shifts in the cerebral cortex of unanaesthetized cats.
    Molnár M; Skinner JE
    Acta Physiol Hung; 1983; 61(4):265-79. PubMed ID: 6316727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are H+ and K+ factors for the adjustment of cerebral blood flow to changes in functional state: a microelectrode study.
    Heuser D; Astrup J; Lassen NA; Nilsson B; Norberg K; Siesjö BK
    Acta Neurol Scand Suppl; 1977; 64():216-7. PubMed ID: 19912
    [No Abstract]   [Full Text] [Related]  

  • 7. Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue.
    Heinemann U; Konnerth A; Pumain R; Wadman WJ
    Adv Neurol; 1986; 44():641-61. PubMed ID: 3518350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in the concentration of extracellular potassium in the cerebral cortex with different parameters of electrical stimulation].
    Roĭtbak AI; Ocherashvili IV
    Fiziol Zh SSSR Im I M Sechenova; 1987 Feb; 73(2):277-83. PubMed ID: 3569598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of emopamil on cerebrocortical microcirculation during hypoxia and reactive hyperemia and on [K+]e, pH, pO2 changes during and after N2 anoxia.
    Urbanics R; Kovach AG
    Adv Exp Med Biol; 1989; 248():479-87. PubMed ID: 2782168
    [No Abstract]   [Full Text] [Related]  

  • 10. Changes in extracellular potassium activity during neocortical propagated seizures.
    Sypert GW; Ward AA
    Exp Neurol; 1974 Oct; 45(1):19-41. PubMed ID: 4412381
    [No Abstract]   [Full Text] [Related]  

  • 11. Measurements of extracellular potassium and calcium concentration during passage of current across the surface of the brain [proceedings].
    Gardner-Medwin AR; Nicholson C
    J Physiol; 1978 Feb; 275():66P-67P. PubMed ID: 633164
    [No Abstract]   [Full Text] [Related]  

  • 12. Spatial stability of extracellular potassium ion and blood flow distribution in rat cerebral cortex after permanent middle cerebral artery occlusion.
    Sick TJ; Feng ZC; Rosenthal M
    J Cereb Blood Flow Metab; 1998 Oct; 18(10):1114-20. PubMed ID: 9778188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenobarbital actions in vivo: effects on extra cellular potassium activity and oxidative metabolism in cat cerebral cortex.
    LaManna JC; Cordingley G; Rosenthal M
    J Pharmacol Exp Ther; 1977 Mar; 200(3):560-9. PubMed ID: 191589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen supply and microcirculation of the brain cortex.
    Leniger-Follert E
    Adv Exp Med Biol; 1985; 191():3-19. PubMed ID: 3914205
    [No Abstract]   [Full Text] [Related]  

  • 15. Measurements with ionselective electrodes in the brain cortex during a short period of ischemia and arterial hypoxia.
    Urbanics R; Leniger-Follert E; Lübbers DW
    Z Med Lab Diagn; 1982 Apr; 23(2):92-5. PubMed ID: 6287751
    [No Abstract]   [Full Text] [Related]  

  • 16. Intra- and extracellular distribution of potassium in terms of variations of the dissociation constant of carboxylic groups in the cytoplasmic proteins of the cerebral cortex.
    Benetato G; Uluitu M; Petec G; Bubuianu E; Petrescu A
    Rev Roum Physiol; 1970; 7(2):95-106. PubMed ID: 5492067
    [No Abstract]   [Full Text] [Related]  

  • 17. [Changes in the extracellular potassium concentration and the slow negative potential in the cerebral cortex].
    Roĭtbak AI; Makhek I; Pavlik V; Bobrov AV; Ocherashvili IV
    Neirofiziologiia; 1980; 12(5):459-63. PubMed ID: 7422035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes of extracellular potassium concentration in the cortex and brain stem during the acute phase of experimental closed head injury (author's transl)].
    Takahashi H; Manaka S; Sano K
    No To Shinkei; 1981 Apr; 33(4):365-76. PubMed ID: 7196250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary flow in the brain cortex during changes in oxygen supply and state of activation.
    Lübbers DW; Leniger-Follert E
    Ciba Found Symp; 1978 Mar; (56):21-47. PubMed ID: 27338
    [No Abstract]   [Full Text] [Related]  

  • 20. [The role of changes in ion exchange in brain tissue in the mechanism of the central action of nitroglycerin].
    Vysotskaia NB; Markova GA
    Farmakol Toksikol; 1973; 26(4):411-4. PubMed ID: 4208123
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.