BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 2796384)

  • 1. 5-bromodeoxyuridine (BUdR) quenching of acridine orange fluorescence distinguishes cycling and non-cycling normal and malignant bone marrow cells in vitro.
    Maddox AM; Johnson DA; Keating MJ
    Leuk Res; 1989; 13(9):781-90. PubMed ID: 2796384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The study of acute leukemia cells by means of acridine orange staining and flow cytometry.
    Preisler HD; Raza A; Gopal V; Banavali SD; Bokhari J; Lampkin B
    Leuk Lymphoma; 1994 Mar; 13(1-2):61-73. PubMed ID: 7517746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of hematologic malignancies by flow cytometry.
    Barlogie B; Latreille J; Freireich EJ; Fu CT; Mellard D; Meistrich M; Andreeff M
    Blood Cells; 1980; 6(4):719-44. PubMed ID: 7008871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of acridine orange to DNA in situ of cells from patients with acute leukemia.
    Walle AJ; Wong GY
    Cancer Res; 1989 Jul; 49(13):3692-5. PubMed ID: 2731183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-RNA measurements in patients with acute leukemia undergoing remission induction therapy.
    Maddox AM; Johnston DA; Barlogie B; Youness E; Keating M; Freireich EJ
    J Clin Oncol; 1985 Jun; 3(6):799-808. PubMed ID: 4009216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell proliferation of human leukemia and solid tumors studied with in vivo bromodeoxyuridine and flow cytometry.
    Giordano M; Riccardi A; Danova M; Brugnatelli S; Mazzini G
    Cancer Detect Prev; 1991; 15(5):391-6. PubMed ID: 1751950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrimination of cycling and non-cycling lymphocytes by BUdR-suppressed acridine orange fluorescence in a flow cytometric system.
    Darźynkiewicz Z; Andreeff M; Traganos F; Sharpless T; Melamed MR
    Exp Cell Res; 1978 Aug; 115(1):31-5. PubMed ID: 79494
    [No Abstract]   [Full Text] [Related]  

  • 8. Discrimination of human leukemia subtypes by flow cytometric analysis of cellular DNA and RNA.
    Andreeff M; Darzynkiewicz Z; Sharpless TK; Clarkson BD; Melamed MR
    Blood; 1980 Feb; 55(2):282-93. PubMed ID: 6928106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometric cell cycle analysis using the quenching of 33258 Hoechst fluorescence by bromodeoxyuridine incorporation.
    Böhmer RM
    Cell Tissue Kinet; 1979 Jan; 12(1):101-10. PubMed ID: 369699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell kinetics in leukaemia and solid tumours studied with in vivo bromodeoxyuridine and flow cytometry.
    Riccardi A; Danova M; Dionigi P; Gaetani P; Cebrelli T; Butti G; Mazzini G; Wilson G
    Br J Cancer; 1989 Jun; 59(6):898-903. PubMed ID: 2736227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proliferating cell nuclear antigen (PCNA)/cyclin expression during the cell cycle in normal and leukemic cells.
    Giordano M; Danova M; Pellicciari C; Wilson GD; Mazzini G; Conti AM; Franchini G; Riccardi A; Romanini MG
    Leuk Res; 1991; 15(11):965-74. PubMed ID: 1683676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-phase cells of the lymphoplasmocytic compartment in hyperdiploid multiple myeloma are diploid cells.
    Haraldsdóttir V; Haanen C; Kalsbeek-Batenburg E; Olthuis F
    Cytometry; 1995 Oct; 21(2):203-10. PubMed ID: 8582241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different sensitivity of chromatin to acid denaturation in quiescent and cycling cells as revealed by flow cytometry.
    Darzynkiewicz Z; Traganos F; Andreeff M; Sharpless T; Melamed MR
    J Histochem Cytochem; 1979 Jan; 27(1):478-85. PubMed ID: 86572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo incorporation of bromodeoxyuridine into proliferating cells in the marrow and its effects on granulocyte-macrophage progenitor cells.
    Morstyn G; Kinsella T; Shan CS; Whang-Peng J; Russo A; Mitchell JB
    Exp Hematol; 1985 May; 13(4):289-94. PubMed ID: 3987831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of bromodeoxyuridine in malignant and normal cells following therapy: relationship to complications.
    Morstyn G; Kinsella T; Hsu SM; Russo A; Gratzner H; Mitchell J
    Int J Radiat Oncol Biol Phys; 1984 Aug; 10(8):1441-5. PubMed ID: 6469767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytokinetic investigation of lung tumors using the anti-bromodeoxyuridine (BUdR) monoclonal antibody method: comparison with DNA flow cytometric data.
    Teodori L; Trinca ML; Goehde W; Hemmer J; Salvati F; Storniello G; Mauro F
    Int J Cancer; 1990 Jun; 45(6):995-1001. PubMed ID: 2161804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative cytology in leukemia research.
    Barlogie B; Maddox AM; Johnston DA; Raber MN; Drewinko B; Keating MJ; Freireich EJ
    Blood Cells; 1983; 9(1):35-55. PubMed ID: 6344934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of L3 leukemia and Burkitt's lymphoma cells by flow cytometric quantitation of nuclear and cellular RNA and DNA content.
    Walle AJ
    Leuk Res; 1986; 10(3):303-12. PubMed ID: 3951253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA and RNA flow cytometric study in multiple myeloma. Clinical correlations.
    Tafuri A; Meyers J; Lee BJ; Andreeff M
    Cancer; 1991 Jan; 67(2):449-54. PubMed ID: 1985738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monoclonal antibody Ki-67 as a marker of proliferative activity in monoclonal gammopathies.
    Girino M; Riccardi A; Luoni R; Ucci G; Cuomo A
    Acta Haematol; 1991; 85(1):26-30. PubMed ID: 2011926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.