BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 27964820)

  • 1. T Cell Exhaustion in Glioblastoma: Intricacies of Immune Checkpoints.
    Mirzaei R; Sarkar S; Yong VW
    Trends Immunol; 2017 Feb; 38(2):104-115. PubMed ID: 27964820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Immune Checkpoint Inhibition in the Treatment of Brain Tumors.
    Luksik AS; Maxwell R; Garzon-Muvdi T; Lim M
    Neurotherapeutics; 2017 Oct; 14(4):1049-1065. PubMed ID: 28258545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy.
    Kouidhi S; Ben Ayed F; Benammar Elgaaied A
    Front Immunol; 2018; 9():353. PubMed ID: 29527212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunotherapy for the treatment of glioblastoma.
    Thomas AA; Ernstoff MS; Fadul CE
    Cancer J; 2012; 18(1):59-68. PubMed ID: 22290259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in targeting co-inhibitory and co-stimulatory pathways in transplantation settings: the Yin to the Yang of cancer immunotherapy.
    Kean LS; Turka LA; Blazar BR
    Immunol Rev; 2017 Mar; 276(1):192-212. PubMed ID: 28258702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development.
    Majc B; Novak M; Kopitar-Jerala N; Jewett A; Breznik B
    Cells; 2021 Jan; 10(2):. PubMed ID: 33572835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Editorial: Improving responses to immunotherapy in glioblastoma multiforme.
    McArdle SEB; Nagarajan D; Barish ME
    Front Immunol; 2024; 15():1407930. PubMed ID: 38715607
    [No Abstract]   [Full Text] [Related]  

  • 8. Glioblastoma-activated pericytes support tumor growth via immunosuppression.
    Sena IFG; Paiva AE; Prazeres PHDM; Azevedo PO; Lousado L; Bhutia SK; Salmina AB; Mintz A; Birbrair A
    Cancer Med; 2018 Apr; 7(4):1232-1239. PubMed ID: 29479841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous targeting of Eph receptors in glioblastoma.
    Ferluga S; Tomé CM; Herpai DM; D'Agostino R; Debinski W
    Oncotarget; 2016 Sep; 7(37):59860-59876. PubMed ID: 27494882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T cell dysfunction in glioblastoma: a barrier and an opportunity for the development of successful immunotherapies.
    Jansen JA; Omuro A; Lucca LE
    Curr Opin Neurol; 2021 Dec; 34(6):827-833. PubMed ID: 34569985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing the capacity of phytochemicals to enhance immune checkpoint inhibitor therapy of cancers: A focus on brain malignancies.
    Afshari AR; Sanati M; Ahmadi SS; Kesharwani P; Sahebkar A
    Cancer Lett; 2024 Jul; 593():216955. PubMed ID: 38750720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction to checkpoint inhibitors and cancer immunotherapy.
    Sharpe AH
    Immunol Rev; 2017 Mar; 276(1):5-8. PubMed ID: 28258698
    [No Abstract]   [Full Text] [Related]  

  • 13. Overview of current immunotherapeutic strategies for glioma.
    Calinescu AA; Kamran N; Baker G; Mineharu Y; Lowenstein PR; Castro MG
    Immunotherapy; 2015; 7(10):1073-104. PubMed ID: 26598957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serum very long-chain fatty acid-containing lipids predict response to immune checkpoint inhibitors in urological cancers.
    Mock A; Zschäbitz S; Kirsten R; Scheffler M; Wolf B; Herold-Mende C; Kramer R; Busch E; Jenzer M; Jäger D; Grüllich C
    Cancer Immunol Immunother; 2019 Dec; 68(12):2005-2014. PubMed ID: 31701161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunotherapy in CNS cancers: the role of immune cell trafficking.
    Ratnam NM; Gilbert MR; Giles AJ
    Neuro Oncol; 2019 Jan; 21(1):37-46. PubMed ID: 29771386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity and individualized treatment of microenvironment in glioblastoma (Review).
    Kang W; Mo Z; Li W; Ma H; Zhang Q
    Oncol Rep; 2023 Dec; 50(6):. PubMed ID: 37888767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IFN-λ cancer immunotherapy: new kid on the block.
    Lasfar A; Gogas H; Zloza A; Kaufman HL; Kirkwood JM
    Immunotherapy; 2016 Jul; 8(8):877-88. PubMed ID: 27381684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing Clinical Trials for Combination Immunotherapy: A Framework for Glioblastoma.
    Singh K; Batich KA; Wen PY; Tan AC; Bagley SJ; Lim M; Platten M; Colman H; Ashley DM; Chang SM; Rahman R; Galanis E; Mansouri A; Puduvalli VK; Reardon DA; Sahebjam S; Sampson JH; Simes J; Berry DA; Zadeh G; Cloughesy TF; Mehta MP; Piantadosi S; Weller M; Heimberger AB; Khasraw M
    Clin Cancer Res; 2022 Feb; 28(4):585-593. PubMed ID: 34561270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding innate immune response in glioblastoma in search of a way forward.
    Pant A; Lim M
    Neuro Oncol; 2020 Apr; 22(4):444-445. PubMed ID: 32090256
    [No Abstract]   [Full Text] [Related]  

  • 20. The network of immunosuppressive pathways in glioblastoma.
    Mangani D; Weller M; Roth P
    Biochem Pharmacol; 2017 Apr; 130():1-9. PubMed ID: 28017775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.