These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 27964902)
1. Optimization of a DPI Inhaler: A Computational Approach. Milenkovic J; Alexopoulos AH; Kiparissides C J Pharm Sci; 2017 Mar; 106(3):850-858. PubMed ID: 27964902 [TBL] [Abstract][Full Text] [Related]
2. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach. Milenkovic J; Alexopoulos AH; Kiparissides C Int J Pharm; 2014 Jan; 461(1-2):129-36. PubMed ID: 24296048 [TBL] [Abstract][Full Text] [Related]
3. The clinical relevance of dry powder inhaler performance for drug delivery. Demoly P; Hagedoorn P; de Boer AH; Frijlink HW Respir Med; 2014 Aug; 108(8):1195-203. PubMed ID: 24929253 [TBL] [Abstract][Full Text] [Related]
4. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Sommerfeld M; Cui Y; Schmalfuß S Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814 [TBL] [Abstract][Full Text] [Related]
6. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application. Kolanjiyil AV; Kleinstreuer C; Sadikot RT Comput Biol Med; 2017 May; 84():247-253. PubMed ID: 27836120 [TBL] [Abstract][Full Text] [Related]
7. Computer-aided design of dry powder inhalers using computational fluid dynamics to assess performance. Suwandecha T; Wongpoowarak W; Srichana T Pharm Dev Technol; 2016; 21(1):54-60. PubMed ID: 25265389 [TBL] [Abstract][Full Text] [Related]
8. Importance of powder residence time for the aerosol delivery performance of a commercial dry powder inhaler Aerolizer(®). Jiang L; Tang Y; Zhang H; Lu X; Chen X; Zhu J J Aerosol Med Pulm Drug Deliv; 2012 Oct; 25(5):265-79. PubMed ID: 22280548 [TBL] [Abstract][Full Text] [Related]
9. Development of Dry Powder Inhaler Patient Interfaces for Improved Aerosol Delivery to Children. Bass K; Longest W AAPS PharmSciTech; 2020 May; 21(5):157. PubMed ID: 32451773 [TBL] [Abstract][Full Text] [Related]
10. Effects of the mouthpiece and chamber of Turbuhaler® on the aerosolization of API-only powder formulations. Zhu Q; Gou D; Chan HK; Kourmatzis A; Yang R Int J Pharm; 2023 Apr; 637():122871. PubMed ID: 36948474 [TBL] [Abstract][Full Text] [Related]
11. Discrete Modelling of Powder Dispersion in Dry Powder Inhalers - A Brief Review. Tong Z; Yu A; Chan HK; Yang R Curr Pharm Des; 2015; 21(27):3966-73. PubMed ID: 26290194 [TBL] [Abstract][Full Text] [Related]
12. Effect of sampling volume on dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distributions (APSDs) measured by the Next-Generation Pharmaceutical Impactor (NGI) and the Andersen eight-stage cascade impactor (ACI). Mohammed H; Roberts DL; Copley M; Hammond M; Nichols SC; Mitchell JP AAPS PharmSciTech; 2012 Sep; 13(3):875-82. PubMed ID: 22678745 [TBL] [Abstract][Full Text] [Related]
13. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler. Bass K; Farkas D; Longest W AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991 [TBL] [Abstract][Full Text] [Related]
14. Determination of Passive Dry Powder Inhaler Aerodynamic Particle Size Distribution by Multi-Stage Cascade Impactor: International Pharmaceutical Aerosol Consortium on Regulation & Science (IPAC-RS) Recommendations to Support Both Product Quality Control and Clinical Programs. Mitchell JP; Stein SW; Doub W; Goodey AP; Christopher JD; Patel RB; Tougas TP; Lyapustina S AAPS PharmSciTech; 2019 May; 20(5):206. PubMed ID: 31147791 [TBL] [Abstract][Full Text] [Related]
15. CFD-DEM investigation of the effects of aperture size for a capsule-based dry powder inhaler. Zhu Q; Kakhi M; Jayasundara C; Walenga R; Behara SRB; Chan HK; Yang R Int J Pharm; 2023 Nov; 647():123556. PubMed ID: 37890648 [TBL] [Abstract][Full Text] [Related]
16. Computational investigation of particle penetration and deposition pattern in a realistic respiratory tract model from different types of dry powder inhalers. Kim YH; Li DD; Park S; Yi DS; Yeoh GH; Abbas A Int J Pharm; 2022 Jan; 612():121293. PubMed ID: 34808267 [TBL] [Abstract][Full Text] [Related]
17. Effect of USP Induction Ports, Glass Sampling Apparatus, and Inhaler Device Resistance on Aerodynamic Patterns of Fluticasone Propionate-Loaded Engineered Mannitol Microparticles. Mehta P; Bothiraja C; Kadam S; Pawar A AAPS PharmSciTech; 2019 May; 20(5):197. PubMed ID: 31123855 [TBL] [Abstract][Full Text] [Related]
18. Technological and practical challenges of dry powder inhalers and formulations. Hoppentocht M; Hagedoorn P; Frijlink HW; de Boer AH Adv Drug Deliv Rev; 2014 Aug; 75():18-31. PubMed ID: 24735675 [TBL] [Abstract][Full Text] [Related]
19. Optimizing the Entrainment Geometry of a Dry Powder Inhaler: Methodology and Preliminary Results. Kopsch T; Murnane D; Symons D Pharm Res; 2016 Nov; 33(11):2668-79. PubMed ID: 27401410 [TBL] [Abstract][Full Text] [Related]
20. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling. Longest W; Farkas D AAPS J; 2019 Feb; 21(2):25. PubMed ID: 30734133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]