These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27964952)

  • 1. Docking simulations between drugs and HLA molecules associated with idiosyncratic drug toxicity.
    Hirayama N
    Drug Metab Pharmacokinet; 2017 Feb; 32(1):31-39. PubMed ID: 27964952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions.
    Luo H; Du T; Zhou P; Yang L; Mei H; Ng H; Zhang W; Shu M; Tong W; Shi L; Mendrick DL; Hong H
    Comb Chem High Throughput Screen; 2015; 18(3):296-304. PubMed ID: 25747444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical assessment of approaches for molecular docking to elucidate associations of HLA alleles with adverse drug reactions.
    Ramsbottom KA; Carr DF; Jones AR; Rigden DJ
    Mol Immunol; 2018 Sep; 101():488-499. PubMed ID: 30125869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Silico and In Vitro Analysis of Interaction between Ximelagatran and Human Leukocyte Antigen (HLA)-DRB1*07:01.
    Hirasawa M; Hagihara K; Abe K; Ando O; Hirayama N
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28338626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the Mechanisms Underlying Interindividual Differences in the Onset of Adverse Drug Reactions.
    Aoki S
    Biol Pharm Bull; 2024; 47(6):1079-1086. PubMed ID: 38825461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity.
    Cruz-Monteagudo M; Cordeiro MN; Borges F
    J Comput Chem; 2008 Mar; 29(4):533-49. PubMed ID: 17705164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HLA transgenic mice: application in reproducing idiosyncratic drug toxicity.
    Susukida T; Aoki S; Shirayanagi T; Yamada Y; Kuwahara S; Ito K
    Drug Metab Rev; 2020 Nov; 52(4):540-567. PubMed ID: 32847422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Idiosyncratic drug reactions: current understanding.
    Uetrecht J
    Annu Rev Pharmacol Toxicol; 2007; 47():513-39. PubMed ID: 16879083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States.
    Stepan AF; Walker DP; Bauman J; Price DA; Baillie TA; Kalgutkar AS; Aleo MD
    Chem Res Toxicol; 2011 Sep; 24(9):1345-410. PubMed ID: 21702456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Nevirapine with the Peptide Binding Groove of HLA-DRB1*01:01 and Its Effect on the Conformation of HLA-Peptide Complex.
    Hirasawa M; Hagihara K; Abe K; Ando O; Hirayama N
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29867033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A docking model of dapsone bound to HLA-B*13:01 explains the risk of dapsone hypersensitivity syndrome.
    Watanabe H; Watanabe Y; Tashiro Y; Mushiroda T; Ozeki T; Hashizume H; Sueki H; Yamamoto T; Utsunomiya-Tate N; Gouda H; Kusakabe Y
    J Dermatol Sci; 2017 Dec; 88(3):320-329. PubMed ID: 28870516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HLADR: a database system for enhancing the discovery of biomarkers for predicting human leukocyte antigen-mediated idiosyncratic adverse drug reactions.
    Du T; Yang L; Luo H; Zhou P; Mei H; Xuan J; Xing Q; Ning B; Mendrick DL; Shi L
    Biomark Med; 2015; 9(11):1079-93. PubMed ID: 26501190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adverse drug reactions triggered by the common HLA-B*57:01 variant: virtual screening of DrugBank using 3D molecular docking.
    Van Den Driessche G; Fourches D
    J Cheminform; 2018 Jan; 10(1):3. PubMed ID: 29383457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ensemble-based docking: From hit discovery to metabolism and toxicity predictions.
    Evangelista W; Weir RL; Ellingson SR; Harris JB; Kapoor K; Smith JC; Baudry J
    Bioorg Med Chem; 2016 Oct; 24(20):4928-4935. PubMed ID: 27543390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A toxicity risk index, an index for warning idiosyncratic drug toxicity.
    Morimoto M; Samizo K; Ohta S; Mizuma T
    J Pharm Sci; 2013 Sep; 102(9):3447-50. PubMed ID: 23666879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural basis of HLA-associated drug hypersensitivity syndromes.
    Pompeu YA; Stewart JD; Mallal S; Phillips E; Peters B; Ostrov DA
    Immunol Rev; 2012 Nov; 250(1):158-66. PubMed ID: 23046128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in molecular toxicology-towards understanding idiosyncratic drug toxicity.
    Park BK; Kitteringham NR; Powell H; Pirmohamed M
    Toxicology; 2000 Nov; 153(1-3):39-60. PubMed ID: 11090946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug Hypersensitivity: How Drugs Stimulate T Cells via Pharmacological Interaction with Immune Receptors.
    Pichler WJ; Adam J; Watkins S; Wuillemin N; Yun J; Yerly D
    Int Arch Allergy Immunol; 2015; 168(1):13-24. PubMed ID: 26524432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.
    LaBute MX; Zhang X; Lenderman J; Bennion BJ; Wong SE; Lightstone FC
    PLoS One; 2014; 9(9):e106298. PubMed ID: 25191698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Recent findings regarding the mechanism of idiosyncratic drug toxicity].
    Ikeda T
    Yakugaku Zasshi; 2015; 135(4):567-78. PubMed ID: 25832837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.